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Figure 1: Comparison of fluid renderings for the SingleDam scene. Column (c) showcases our ViP-Fluid method alongside low
(a) and high (d) resolution PBF[18] benchmarks, and the SOTA method FovFluid[42] (b). The first row depicts their renderings
with zoom-in views of the visually salient (red box) and foveated areas (black box). The second row illustrates the granularity
levels of particle swarms, transitioning from coarse (blue) to fine (white), as determined by the visual perception saliency model.

ABSTRACT

The demand for fluid simulation and rendering in virtual reality
(VR) is increasing. However, achieving high visual quality while
maintaining real-time efficiency remains a challenge. Traditional
foveated rendering methods balance the simulation quality in the
foveated region but neglect the physical realism in the peripheral
areas, and fail to account for the perceptual degradation caused by
frame rate fluctuations during adaptive updates. To address these
challenges, we propose a novel visual perception driven fluid ren-
dering method ViP-Fluid, which further enhances rendering quality
while balancing efficiency. Our approach employs a spatiotempo-
ral saliency model for multi-granularity simulation and rendering
of Lagrangian fluid systems, and introduces a Perception Thresh-
old for Physical Process Elapsing (PTPE) metric, which guides our
temporal acceleration strategy. Through a series of objective exper-
iments, we demonstrate the advantages of our method in rendering
quality and performance efficiency. ViP-Fluid demonstrates supe-
rior metrics not only in the foveated region but also in the salient
and overall regions, achieving up to 2.15 times speed-up compared
to the high-resolution Position Based Fluids (PBF) benchmark.
Subsequent user experiments further validate the visual perception
advantages of ViP-Fluid over both traditional and state-of-the-art
methods, confirming the spatiotemporal fidelity of our acceleration
strategy as well as a user preference for our approach.
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1 INTRODUCTION

Fluid simulation and rendering in VR pose unique challenges, bal-
ancing high visual quality with real-time efficiency. Traditional
methods like high-resolution Position-Based Fluids (PBF) [18] of-
fer detailed visuals at the cost of computational complexity and
reduced performance. In contrast, low-resolution simulations or
foveated rendering methods like FovFluid [42] improve efficiency
but often compromise quality, particularly in peripheral regions.
FovFluid’s limited two-level particle scale leads to significant spa-
tiotemporal fluctuations during complex updates, overlooking po-
tential visually salient details.

Many spatial and temporal fluid phenomena, such as splashes,
ripples, fragmentation, turbulence, vortices, and water crowns, at-
tract visual attention during simulation and rendering. In VR near-
eye rendering tasks, improving the quality of these visual interest
areas while balancing the efficiency in laminar or hidden areas is
a valuable direction to explore. Our approach, ViP-Fluid, lever-
ages multi-level granularity particle simulation, adjusting resolu-
tion based on visual perception and computational demands, and
employs a spatiotemporal saliency model to enhance detail fidelity
in both spatial and temporal aspects. To reduce negative effects
in the temporal domain brought by adaptive updating, this method
introduces a Perception Threshold for Physical Process Elapsing
(PTPE) to assess these effects and calibrates a model through a pi-
lot user study, which informs a temporal acceleration strategy to
effectively balance quality and efficiency.

A series of objective experiments were conducted to evaluate
the quality and performance of our method. Our experiments span
across three fluid scenarios and two baselines, comparing five con-
ditions. The results demonstrate the superior performance of ViP-
Fluid across critical metrics in foveated, salient, and overall regions.
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Our method achieves up to 2.15 times speed-up compared to the
high-resolution PBF benchmark. Moreover, our acceleration effi-
ciency effectively enhances the PTPE perception score. Subsequent
user experiments further validate the visual perception advantages
of ViP-Fluid over traditional state-of-the-art (SOTA) methods, con-
firming the spatiotemporal fidelity of our acceleration strategy. Fur-
thermore, user preference for our approach is demonstrated to be
favorable, reaching over 80% compared to FovFluid.

In summary, we present our main contributions as follows:
• We introduce a visual perception-driven saliency model that

calculates the importance characteristics of Lagrangian fluid
systems from spatial and temporal dimensions, guiding multi-
granularity particle updates.

• We establish a PTPE threshold to assess temporal perception
in physical simulations, calibrated through preliminary user
experiments, and employed to direct temporal acceleration
strategies in system simulations.

• We perform objective experiments and user studies to evaluate
ViP-Fluid and compare it with other methods across different
configurations, confirming the beneficial effects of our accel-
eration strategy on visual perception.

2 RELATED WORKS

Fluid simulation and rendering in VR, applicable to gaming, edu-
cation, medicine, and engineering, has seen early prototypes that
demonstrate its potential. For instance, Boettcher et al. [3] demon-
strated fluid mechanics in VR, while Chen et al. [6] simulated
acidic fluid splashes in labs. Yan et al. [44] use VR sketches to
guide the generation of fluid shapes, while Deng et al. [9] explored
free-hand interaction with fluids in VR. Other applications include
water therapy [26], interactive gaming with real water and virtual
feedback [8], and development of parallel accelerated fluid sim-
ulation systems [14, 45]. These initial implementations, whether
through sparse simplification or small-scale simulation, have in-
spired advancements in VR fluid dynamics.

2.1 Non-data-driven Fluid Simulation
Traditional physics-based non-data-driven fluid simulation methods
are categorized into three primary approaches: particle-based from
a Lagrangian perspective [25, 40, 20], grid-based from an Eule-
rian perspective [33, 7], and the lattice Boltzmann method (LBM)
[12] for complex flows like those in porous media. Deep learn-
ing or data-driven methods [5] are efficient in model testing but
consume significant computational resources during data prepara-
tion and training. They achieve realistic visual effects but lack the
physical accuracy and explainability of traditional models. Deep
learning methods often require retraining for new scenes, reducing
portability in VR applications. In VR simulations, particle-based
methods such as Smoothed Particle Hydrodynamics (SPH) [15] and
Position Based Fluids (PBF) [18] are prevalent due to their suit-
ability for real-time rendering with Screen Space Fluid (SSF) algo-
rithms [39, 38, 22]. To optimize the efficiency of fluid simulation
for different scenarios, adaptive techniques adjust computational re-
sources dynamically. For example, Two-Scale [32] and Multi-Scale
[1] simulations vary resolution across scenes to match flow dynam-
ics, while Temporal Blending [23] smooths SPH computations over
time for enhanced realism. Innovations in adaptive fluid simulation,
such as Pixar’s mass-conserving method [13], have broad appli-
cations in virtual reality and gaming. FovFluids [42] exemplifies
this with its two-scale approach, prioritizing high-resolution simu-
lations in the gaze-focused areas and lower resolutions peripherally.
In a hybrid Eulerian and Lagrangian perspective, several classic
algorithms have been derived, such as the Material Point Method
(MPM) [36], Particle-In-Cell (PIC) [16, 11], and Fluid-Implicit Par-
ticle (FLIP) [4]. Among them, several excellent adaptive methods

have also emerged, such as [2, 21, 10]. They offer sophisticated
tools for adapting fluid simulation.

2.2 Visual Perception Models
The adaptive methods discussed previously did not adequately
account for the Human Visual System (HVS) perceptions, with
FovFluids [42] being an exception focusing on real-time render-
ing. Visual perception models, integral to simulating HVS per-
ceptions, use mathematical and computational approaches to cap-
ture and analyze processes related to light, color, contrast, space,
and time. Models like the visual acuity decline [17, 43] and con-
trast sensitivity functions (CSF) [28, 24] address spatial eccentricity
and contrast’s impact on perception, influencing rendering quality
based on proximity to the gaze point. Other studies [34, 31] have
examined sensitivity changes due to relative motion, underscoring
the increased perception sensitivity closer to gaze points. FovFlu-
ids leverages foveated rendering [41] to optimize rendering quality
based on eccentricity, reducing computational loads in less sensi-
tive peripheral areas. Despite these advancements, global adaptive
simulation and inherent visual perception attributes of fluids remain
underexploited. This paper integrates visual perception models into
real-time fluid rendering, aiming to enhance realism and perfor-
mance in VR applications by adapting to visually significant areas
and viewer interactions.

3 METHOD

3.1 Rendering Pipeline
As depicted in Fig. 2, our ViP-Fluid rendering pipeline consists of
three primary stages:

• Visual Saliency Calculation: Incorporating previous frame
data on fluid particle attributes and gaze information derived
from eye movement, we compute particle saliency using a vi-
sual perception model accounting for both spatial and tem-
poral aspects. This generates a comprehensive saliency map,
detailed further in subsection 3.2.

• Multi-level Particles Update: We enhance granularity in ar-
eas of high saliency by linking particle scale levels to their
saliency values. Smaller particles in these areas ensure higher
accuracy, while larger particles enhance efficiency. Particle
sizes are dynamically adjusted through splitting or merging,
as governed by the protocols in subsection 3.3.

• Solver with Temporal Acceleration: To accelerate fluid ren-
dering in VR, we constructed velocity field grids and imple-
mented a saliency-based activation mechanism for each par-
ticle. Activation sampling determines whether a particle is
processed by the PBF solver to update its attributes on the
grid or remains inactive, inheriting grid attributes directly and
pausing splitting updates. This approach optimizes rendering
speed and efficiency. Details on this strategy are in section 4.

After three stages, we generate a frame with particles of varied
saliency granularities. These are rendered using the SSF algorithm
and displayed on a VR Head-Mounted Display (HMD) integrated
with an infrared eye movement tracking device for real-time binoc-
ular visualization and input of the next frame’s gaze information.

3.2 Visual Perception Saliency of Particles
Contrasting the FovFluid [42] approach, our ViP-Fluid method
comprehensively considers visual perception disparities stemming
from gaze information, fluid dynamics, and changes in physical pa-
rameters. To address these disparities for multi-granularity render-
ing, we introduce a visual perception saliency model that integrates
spatial and temporal components. This model guides subsequent
granularity determination by defining visual saliency features for
particles, as detailed in Equation 1. Here, the spatial feature fS
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Figure 2: ViP-Fluid rendering pipeline.

and temporal feature fT combine to calculate the spatio-temporal
saliency of particle i:

F(i,pv,g,Π,Φ) = (1−α) fS +α fT . (1)

The function’s input variables, in addition to some necessary
physical parameters of particle i, also include viewpoint pv, gaze
direction vector g, image plane Π, and G-buffer Φ. In the follow-
ing sections, we utilize the normal buffer component Φn and the
depth buffer component Φz. Here, α represents the weight for the
temporal saliency feature. Increasing α enhances temporal turbu-
lence accuracy, while decreasing α highlights spatial details. It is
adjustable (see subsection 5.1) based on user’s scene requirements.

viewpoint ��

fluid cluster 2

� B

�

�

image plane ∏

thickness �� 

view dista
nce �

��

fluid cluster 1

�1 �2

��

�

(a) The case of fluid cluster 1. (b) The case of fluid cluster 2. 

C

D

Figure 3: Parameter illustration for fa, fm, and fT with model
explanations. (a) depicts particle view distance and thickness.
(b) shows spatiotemporal saliency differences; manifold feature at
point A exceeds B, while C and D show greater temporal saliency.

3.2.1 Spatial Saliency
The viewpoint’s spatial relationship with the fluid and the fluid’s
manifold influence visual perception. We aim to enhance the
saliency in visually acute regions, such as foveated areas or near
the viewpoint, and where fluid manifold features like splashes or
liquid bridges are prominent. Hence, spatial saliency involves two
components: the visual acuity feature fa and the fluid manifold fea-
ture fm, as detailed in Equation 2:

fS = fa + fm . (2)

Visual Acuity Features. Many SOTA foveated rendering
works [42, 29] consider eccentricity to dictate rendering quality.
Eccentricity on a 2D image plane dictates the granularity for each
pixel or projected object. However, in a 3D fluid system, traditional
2D eccentricity fails to account for perspective-related variations in
particle saliency. Distant particles require less granularity due to re-
duced perceptual significance, while overly coarse granularity near
the viewpoint results in visible roughness. To dynamically adapt
to these spatial variations, we introduce a trim factor γd in the vi-
sual acuity feature fa, influenced by the optic axis depth of fluid
particles, detailed in Equation 3:

fa(i,pv,g,Π) = clamp
(

e(xi,pv,g)
γd

,0,1
)

, (3)

where e(·) is the eccentricity function defined in [35], receiving the
position xi of particle i, and ensuring a smooth transition from high
saliency inside the foveated area to lower saliency in the peripheral
area. The denominator γd is presented in Equation 4. As the visual
distance becomes closer, the salience of the particles also increases
and the particle size becomes finer.

γd(i,pv,Π) = d
∥intsΠ(xi−pv)−pv∥ . (4)

Here, d represents the view distance from the viewpoint to the
particle, as shown in Figure 3. The operator intsΠ(·) denotes the
intersection of a vector with the image plane Π. intsΠ(xi − pv)
represents the intersection of the viewpoint-particle vector with the
image plane, as indicated by points P1 and P2 in the figure.

Manifold Features. We aim to enhance the visual saliency of
particles in areas with significant free surface changes, such as
splashes, liquid bridges, ripples, and wave edges. In computer
graphics, the post-rendering normal vector buffer serves to indi-
cate surface variability. Areas with notable normal vector changes
suggest higher manifold detail in fluid particles. Additionally, the
visual saliency of particles distant from the viewpoint should be in-
fluenced by their viewing distance. Consequently, we introduce a
denominator γd in manifold feature fm to adjust saliency based on
distance, detailed in Equation 5:

fm(i,Φ) = ∥∇Φn(i)∥/γd , (5)

where Φn(i) represents the normal vector at the point correspond-
ing to particle i projected onto the screen’s normal vector buffer.
∇Φn(i) denotes the gradient in its normal buffer neighborhood,
which is calculated using a discrete method that examines differ-
ences within a neighborhood of five times the particle’s radius. The
manifold features are illustrated in Figure 3; under the same view-
ing distance, the spatial variation of the normal vectors around point
A is significantly more pronounced compared to point B, which ex-
hibits smoother normal vectors. This reflects a greater manifold
feature at point A than that at B.

3.2.2 Temporal Saliency

Inspired by the results verified in CSF [27], where high-frequency
objects in a low-frequency spatiotemporal background lead to a
surge in visual sensitivity, we consider temporal saliency from two
perspectives: temporal changes in physical quantities and particle
motion. In PBF, the density ρi of particle i is a crucial constraint
and process physical quantity that determines the spatial position
of the particle in the next frame. Similarly, the particle’s velocity
vi is an essential physical quantity that dictates the advective dy-
namic behavior of the particle. The more drastic their changes, the
more significant the particle’s temporal behavior is reflected. Con-
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sequently, we define temporal saliency as shown in Equation 6:

fT (i,Π,Φ) =
(
∥∇ρi(2hi)∥

ρi+ε
+
∥∇vi(2hi)∥
∥vi+ε∥

)
/γt , (6)

where the gradient is computed within twice the support radius hi
of particle i as described in Equation 5, with a small value ε used to
avoid division by zero. This saliency component is modified by a
denominator γt , influenced by the thickness dt illustrated in Figure 3
(see the yellow line segment in case 1). The trim factor γt is derived
using Fresnel’s transmission law [37], as detailed in Equation 7:

γt = max
(

e
1
2 dt ,5

)
. (7)

As the thickness of the fluid cluster increases, the visibility of
particles deviating from the viewpoint diminishes exponentially due
to occlusion caused by microcluster thickness. The thickness dt can
be computed via Equation 8:

dt(xi,Π,Φ) = Φz(i)−xi.z− ri , (8)

where Φz(i) represents the depth value of the projection point of
particle i on the depth buffer (shown as point Q in Figure 3, with its
depth value stored in the buffer at P1 on the image plane Π), cor-
responding to the length of the green line segment. xi.z represents
the depth value of particle i, and ri represents the radius of particle
i. Figure 3 illustrates temporal saliency concept in case 2, where
in fluid cluster 2 serving as the background, point C is in a high-
density change area within a low-density background, potentially
leading to complex temporal behaviors in subsequent frames. Point
D is in a high-velocity change area within a low-velocity back-
ground, bringing significant visual stimuli.

3.2.3 Saliency Map

Based on the saliency features computed in Equation 1, we normal-
ize these to derive each particle’s saliency value s, which guides the
new scaling level l as detailed in Equation 9:

li = ⌊N(1− si)⌋, (9)

where N is the number of granularity levels in the system. Higher
N improves rendering quality in spatiotemporal salient regions but
increases particle count, affecting performance. Lower N can cause
fragmented results. It is adjustable (see subsection 5.1) based on
user’s computational resources, balancing efficiency with quality.
We then update particles’ attributes according to new l, as discussed
in subsection 3.3. Figure 4 illustrates the spatial and temporal
saliency maps as well as their ablation.

(a) � = 0  (b) � = 1
3
  (c) � = 2

3
  (d) � = 1  

Figure 4: Ablation saliency maps of spatial and temporal features
under different α . (a) shows the complete spatial saliency feature
map, and (d) shows the complete temporal saliency feature map.

3.3 Legality Updates for Multi-level Particles

To simulate fluids in various salience areas using granular parti-
cles, we categorize each particle’s scale level l into N levels. As
l increases from 0 to N − 1, the particle radius escalates accord-
ingly. In our granularity scheme, each increment in level doubles
the particle’s volume and mass. Consequently, to maintain volume
conservation, the particle radius must increase by 3

√
2 each time l

increments by one. At the base level l = 0, the particle radius is set
at r∗, and its mass at m∗. Thus, the radius of particle i at any given
level is defined in Equation 10:

ri =
3
√

2li r∗. (10)

Also, the support radius hi of particle i will be updated in each
frame according to the rules described in [1], similar to Equation 10.
With the new l calculated from Equation 9, attributes of multi-level
particles are updated by splitting particles that transitioned to lower
levels and merging those that moved to higher levels.

�
1.587 � 0.794 �

a1 b1 c1 d1

�

1.259 �

�
a2 b2 c2 d2

Figure 5: Illustration of the splitting and merging process. (a1) The
particle to be split. (b1) Circumscribing cube of the particle. (c1)
Sample diagonal line for splitting. (d1) Resulting particles after
the split. (a2) Identification of neighboring agent particles with the
same level and mass via the neighborhood grid (shown in red). (b2)
Particles targeted for merging, with the target mass center marked
in green. (c2) Successfully merged particle. (d2) Invalid merged
particle overlapping with another larger particle (in green stripes).

3.3.1 Splitting

Algorithm 1: Split particles transitioned to lower levels.

Input: the pre-frame particles set Pn at the nth frame
Output: the set Pn after the split update

1 foreach particle i ∈ Pn do
2 if li < mi/m∗ then
3 k = mi/m∗− li ; // the level difference

4 Randomly select 2k−1 diagonals of the circumscribing
cube of particle i ;

5 Split along these directions to generate 2k particles set i ;
6 Pn

li+k \{i} , Pn
li
← Pn

li
∪ i;

7 return Pn;

The main logic of particle splitting is outlined in algorithm 1.
Initially, a parallel traversal is performed for each particle i. If a
particle requires splitting, the level difference k from current to the
target level is calculated. For example, if k = 2, the particle under-
goes two splits, resulting in 2k = 4 new particles. Each split divides
a particle into two, maintaining the original center of mass and re-
ducing the radius to 0.794 as Equation 10. To adhere to physical
laws and prevent new particles from deviating from the system or
overlapping, which could cause excessive repulsion, the distance
between the new particles is rearranged to 1.587 times their pre-
split radius. The central connecting axes of these particles are ran-
domly arranged along a diagonal line of the circumscribing cube
of the original particle, ensuring isotropy and eliminating artifacts.
If sufficient splitting occurs, the outer surface of the new particle
remains tightly fitted. Figure 5 illustrates the splitting process for
k = 1; however, for k > 1, this algorithm selects 2k−1 diagonals for
simultaneous splitting.

3.3.2 Merging
The main logic of particle merging is outlined in algorithm 2.
Firstly, we perform parallel traversal of each particle i. If merg-
ing is necessary, we identify neighboring particles with the same
level and mass within the hash grid, ensuring their support radii
intersect. Merging is executed for groups of particles, multiply-
ing their quantity by 2k. The radius and mass of the new particle
are recalculated based on Equation 10, positioning it at the com-
bined center of mass. Mergers are rolled back if the new particle
has previously been marked as small over the past k frames or if
it overlaps with larger particles by support radius, to prevent os-
cillation and excessive repulsion. Figure 5 demonstrates the merger
when k = 1. During the splitting and merging processes, substantial
memory fragmentation occur. To optimize the efficiency of mem-
ory transfers to the GPU, we have implemented a parallel memory
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Algorithm 2: Merge particles transitioned to higher levels.

Input: the pre-frame particles set Pn at the nth frame
Output: the set Pn after the merge update

1 foreach particle i ∈ Pn do
2 if li > mi/m∗ then
3 k = li−mi/m∗ ; // the level difference

// find by cuda hash grid
4 j = f indSameNeighbors(i, li,mi,k) ;
5 i∗ = merge(i, j) ;
6 for k′ : 1→ 3 do
7 if ln−k′

i − ln
i > k′ or ∀l j=li∗ j ∈ h(i∗) then // is

invalid merge
8 continue ;

9 Pn
li−k \ ({i}∪ j) , Pn

li
← Pn

li
∪{i∗} ;

10 return Pn;

alignment strategy, detailed in the supplementary materials.

4 TEMPORAL ACCELERATION

Temporal acceleration enhances efficiency by bypassing computa-
tion for less significant particles, allowing them to inherit adjacent
spatiotemporal information. This method also pauses their splitting
updates to preserve physical properties and control particle counts,
thus reducing computational load.

4.1 Perception Threshold for Physical Process Elaps-
ing

The temporal acceleration strategy, detailed in subsection 4.3, mit-
igates frame rate fluctuations and reduces computation timing in
non-critical areas. Before its explanation, we introduce PTPE to
determine the optimal timing for implementing this strategy. PTPE
evaluates distortions in VR physics simulations caused by temporal
fluctuations experienced by users. As demonstrated in Equation 11,
activating the acceleration, indicated by the switch tolerance τ , de-
pends on the average frame rate µ and its standard deviation δ .
Higher δ values indicate more pronounced fluctuations, increasing
the risk of distortions, while higher µ values smooth the process
and reduce perceived distortions. We calibrate this model’s param-
eters through pilot user study, enhancing the precision in timing
acceleration activation or deactivation. For instance, as outlined in
algorithm 3, the strategy is activated when τ < 0.

τ = µ−a · exp(bδ ) . (11)

Figure 6: PTPE heatmap of FPS mean and standard deviation.

4.2 Pilot User Study
Study Setting. The SingleDam scene was rendered with the

highest granularity, adhering to stringent spatial quality standards.
The program dynamically refreshed the buffer based on specified
frame rates µ and FPS standard deviations δ . Study involved 21

parameter configurations selected from the combinations of frame
rates ranging from 10 to 50 (in increments of 10) and standard de-
viations from 0 to 20 (in increments of 5). Sixteen participants,
aged between 20 and 32, observed each simulation setting for 10
seconds. After observing, they rated their satisfaction on a 7-point
Likert scale, focusing on real-time step speed and smoothness.

Results. Average PTPE scores for various configurations are
shown in Figure 6. Bilinear interpolation was applied to these
scores at 4.0 and 5.0, forming corresponding contours. Notably,
PTPE@4.0 contours, which represent neutral standards best, were
used for exponential regression (Equation 11), resulting in a =
23.68 and b = 0.02. Consequently, the switching tolerance formula
under PTPE@4.0 is represented as τ = µ−23.68 ·exp(0.02δ ), op-
timizing acceleration strategy control in applications.

Algorithm 3: ViP-Fluid solver with temporal acceleration.
Input: the pre-frame particles set Pn, velocity grid map Vn, kinetic

energy grid map En
k , and PTPE tolerance τ

Output: the post-frame particles set Pn+1, the post-frame velocity
buffer Vn+1, and the post-frame kinetic energy grid map
En+1

k
1 if τ ≥ 0 then
2 foreach particle i ∈ Pn do
3 j = f indNeighbors(i) , i∗ = PBF(i, j) ;
4 Vn+1← downsample(vi∗ ,Vn) ;
5 En+1

k ← downsample(mi∗ ,vi∗ ,En
k) ;

6 Pn+1← Pn\{i}∪{i∗};
7 return Pn+1, Vn+1, En+1

k ;

8 β = exp(2bτ) , pi = β +(1−β )∗normalize(Fpim(i)) ;
9 sample Pactive from Pn by probability pi ;

10 foreach particle i ∈ Pn do
11 if i ∈ Pactive then
12 j = f indNeighbors(i) , i∗ = PBF(i, j) ;
13 Vn+1← downsample(vi∗ ,Vn) ;
14 else
15 i∗ = upsample(Vn+1) ;
16 Pause the splitting behavior of i∗ for the next frame.

17 En+1
k ← downsample(mi∗ ,vi∗ ,En

k) ;
18 Pn+1← Pn\{i}∪{i∗};
19 return Pn+1, Vn+1, En+1

k ;

4.3 Acceleration Strategy
we segment the scene into a 1 : 1000 scale space based on the finest
granularity of particles, typically forming a uniform 10× 10× 10
grid to delineate the 3D space. Each grid cell contains the aver-
age velocity V(l,x) at various levels and the kinetic energy Ek(x)
specific to that grid. Leveraging the visual perception saliency s
from subsection 3.2, we evaluate the importance of physical at-
tributes using the function Fpim(·), outlined in Equation 12. This
function correlates a particle’s physical importance directly with its
mass, suggesting that heavier particles are of higher physical signif-
icance weight. Additionally, a particle’s physical importance esca-
lates more rapidly as its visual perceptual saliency increases. This
assessment involves two main components: intra-level variation fin
and cross-level variation fcr:

Fpim(i,V,Ek) =
mi
m∗ · exp(si) · ( fin + fcr) . (12)

At the intra-level of the particle, minimizing simulation errors is
critical, particularly in low-velocity backgrounds where significant
velocity variations occur (Equation 13). This needs to generate high
sampling probabilities in these areas. Moreover, when a cross-level
particle displays inconsistent flow phenomena within the same re-
gion (Equation 14), it becomes essential to prioritize its sampling
and compute an accurate solution to avoid artifact turbulence.

fin(i,V) =
∥∇V(li,xi)∥
∥V(li,xi)∥+ε

+
∥∇V(li,xi)∥

∥∑
N−1
j=0 V( j,xi)∥+ε

. (13)
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fcr(i,V,Ek) = ∥ ∂V(li,xi)
∂ li

∥+ ∥∇Ek(xi)∥
Ek(xi)+ε

. (14)

The activation sampling probability pi for particle i is governed by
Fpim as specified in algorithm 3, with scaling confined between
[β ,1]. Using pi, we determine whether to activate particle i (ac-
tivation toggle). If activated, the particle is processed through the
PBF solver and its physics properties are updated on the grid for the
next frame. If inactive, we directly sample its physical properties
from the grid, pausing splitting updates to save computation time
and ensure global physical accuracy. Here, β = exp(2bτ). As τ

becomes negative and the acceleration strategy activates, pi’s range
compresses, reducing memory transfer, updates, and computational
load. For example, τ = −1.0 results in β = 0.96 and τ = −10.0
results in β = 0.67, optimizing the sampling probability.

5 EXPERIMENTS

We evaluated our method across three fluid scenes: SingleDam,
JetImpact, and Faucet. The following sections compare it with
SOTA methods, assessing quality and performance. Additionally,
we conducted two user studies to confirm our method’s benefits.

5.1 Implementation
Our approach utilizes an OpenGL-CUDA (C++) architecture and
extends a single-granularity PBF solver [19] with multi-granular
coupling based on [1]. Rendering is handled through SSF algorithm
[39]. Experiments were performed on a PC with an RTX 3080 Ti
GPU, Intel i7-10700KF CPU @ 3.80GHz, and 32GB RAM. The
FOV angle is set to 15◦ as in [30]. The finest particles had a base
radius r∗ = 0.075m, calculated using a average viewing distance of
2 to 3 meters and FPPD = 16.0 [42]. The rest density was set to
ρ0 = 1000. We set α in Equation 1 to 2

3 , and N in Equation 9 to 4.

5.2 Results and Comparison
Figure 7 displays rendering results and visual perception saliency
maps for three scenes, sampled at 50-frame intervals. Our method
consistently delivers high-quality in foveal region while preserving
detail in non-foveal areas like fragments and splashes. Efficiency
is optimized by using larger particles deep inside fluid cluster or
laminar regions. Notable phenomena include a liquid bridge in Sin-
gleDam, a turbulent ring in JetImpact, and a splash crown with rip-
ples and a central dry spot in Faucet due to a high-speed impact.

Table 1: Quality comparison of three methods.
method LoRes FovFluid[42] Ours Ours-TSp

Si
ng

le
D

am PSNR@fov ↑ 27.91 29.51 29.88 29.84
PSNR@salient ↑ 28.07 29.45 30.16 29.73
PSNR@overall ↑ 33.44 33.47 34.19 34.11

SSIM-static ↑ 0.72 0.73 0.76 0.76
SSIM-cumul ↑ 0.62 0.68 0.71 0.70

Je
tI

m
pa

ct PSNR@fov ↑ 29.28 33.63 33.04 32.42
PSNR@salient ↑ 30.46 30.70 31.19 31.05
PSNR@overall ↑ 32.60 32.93 33.86 33.49

SSIM-static ↑ 0.66 0.69 0.78 0.76
SSIM-cumul ↑ 0.29 0.53 0.57 0.42

Fa
uc

et

PSNR@fov ↑ 31.89 32.86 32.90 32.72
PSNR@salient ↑ 29.19 29.24 29.37 29.35
PSNR@overall ↑ 34.03 34.18 34.36 34.33

SSIM-static ↑ 0.73 0.74 0.76 0.75
SSIM-cumul ↑ 0.34 0.47 0.54 0.51

5.2.1 Quality
We compared our methods, Ours and Ours-TSp (Time Speedup,
with temporal acceleration), with PBF under low resolution
(LoRes) and high resolution (HiRes, as groud truth, similar to the
approach in [32, 21, 42]), and FovFluid. Our method focuses on
fluid foveated rendering, where FovFluid is the SOTA method ex-
clusively targeting this area. To ensure fairness, considering the
fluctuating particle counts in Ours and FovFluid during execution,
we standardized the baseline particle number n∗ across all meth-
ods. This baseline represents the number of particles in each scene
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Figure 7: Rendered fluid animations using ViP-Fluid across three
scenarios with a baseline of n∗ = 32k. Each scenario features two
rows: the top row shows the rendered outcomes and the bottom row
illustrates the visual saliency feature maps of particle swarms.

simulated at the coarsest granularity. For instance, with n∗ = 16k,
our approach assumes all particles are at their coarsest, resulting in
16k particles, while in the scenario where every particle splits to the
finest granularity, the count would reach 8n∗ = 128k. In contrast,
Lo maintains a constant particle count at n∗, and Hi consistently
uses 8n∗. Figure 8 displays a detailed comparison across differ-
ent methods for three scenes at n∗ = 32k. Analogous to FovFluid,
our method parallels HiRes in foveal detail. However, FovFluid,
considering only two particle levels and transition areas, matches
LoRes in peripheral quality. Conversely, our method retains finer
details in visually salient regions outside the fovea, aligning bet-
ter with human visual preferences. For instance, in the SingleDam
scene, our method preserves edge details and tiny droplets; in the
Faucet scene, it maintains ripples and a more realistically posi-
tioned dry spot. LoRes and FovFluid struggle to capture such de-
tails in non-foveal regions. Notably, in the Ours-TSp method, due
to some particle properties being updated from the grid rather than
solved, chaotic behavior emerges over time, with a minority of par-
ticles exhibiting convergent motion, leading to some loss of detail.
For example, in the JetImpact scene, the vortex structure in Ours-
TSp is less intact than in Ours, and in the Faucet scene, parts of
the ripples in Ours-TSp coalesce into droplets, yet the overall phys-
ical realism remains plausible. Table 1 showcases each method’s
strengths and weaknesses through objective metrics, with no ex-
isting precedent for VR fluid simulation quality assessment. We
evaluate rendering quality using the HiRes method as a bench-
mark against four other methods with a baseline particle count of
n∗ = 32k. Given the chaotic nature of Lagrangian fluid simula-
tions, minor initial variations can lead to significantly diverse out-
comes. To minimize the impact of system chaos, we designate a
static checkpoint frame. Then we run each method from that point
and analyze the rendering results five frames later across foveated,
salient, and overall regions using PSNR. This approach provides
a reasonable comparison basis. For structural similarity, we as-
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Figure 8: Quality comparison.

sess SSIM to gauge spatial fidelity using static checkpoint cases,
and temporal fidelity by cumulatively averaging SSIM over the first
200 frames. Our method exhibits similar PSNR to FovFluid in the
foveated region across three scenes. In other salient regions and
overall, our method performs better than both the low-resolution
PBF and FovFluid. Since the fluid background is not affected by
rendering quality, the overall PSNR may be elevated due to blank
areas, but the relative magnitudes among the methods remain con-
sistent. The SSIM of our method is superior to the other methods,
and the cumulative SSIM tends to decline due to the chaotic sys-
tem. Except for the complex vortices in JetImpact, the accelerated
strategies in other scenes are comparable to the naive strategy.

5.2.2 Performance
We evaluated each method’s performance at various baseline gran-
ularities to assess VR simulation and rendering efficiency. Ta-
ble 2 details runtime particle counts, timing, and speed-ups. We
also present runtime metrics τ , modeled by PTPE@4.0 in sub-
section 4.2, to validate our acceleration strategy. Across differ-
ent scenes and baselines, our method consistently showed slightly
higher particle counts than FovFluid, which also explains enhanc-
ing detail in salient regions. Nevertheless, our method’s speed-up

aligns closely with FovFluid, particularly noticeable in high-load
HiRes scenarios with large baselines. For instance, in Faucet@32k,
speed-ups exceeded 2x, and despite the time spent managing vor-
tex rings in JetImpact, a 1.34x speed-up was maintained. Our ac-
celeration strategy also significantly improved PTPE perception,
enhancing the users’ perceptual quality. For instance, in the Sin-
gleDam@32k scene, after applying our acceleration strategy, τ in-
creased from negative to 1.25, and improvements were also ob-
served in other scenes and baselines.

5.3 User Study
To further validate the subjective visual perception of our method,
we conducted a series of user studies. The host machine used in
these studies matches the PC configuration in subsection 5.1, and is
connected to an XR HMD with eye tracking for near-eye display.

5.3.1 Hypotheses
To address methodological differences, we propose the follow-
ing hypotheses to guide user study designs and test our assump-
tions. H1: Our method exhibits superior performance compared
to FovFluid in various scenes and baseline configurations. H2:
Our method achieves visual effects comparable to HiRes in vari-
ous scenes and baseline configurations. H3: Our acceleration strat-
egy did not degrade visual perception of our naive strategy. H4:
Users will prefer the acceleration strategy. H5: When faced with
FovFluid and our method, users will prefer our method. H6: When
faced with HiRes and our method, users will tend to choose HiRes.

5.3.2 User Study Design
Participants. We recruited 26 participants, with an age range

of 16 to 35 years, including 10 females and 16 males. Among them,
5 participants had no experience using XR devices. All participants
had normal or corrected-to-normal vision.

Conditions. The studies set up five comparison conditions,
which are the low-resolution (LoRes) and high-resolution (HiRes)
settings of the PBF solver, the classic FovFluid[42] method, and
our method’s naive strategy (Ours) and temporal speed-up strategy
(Ours-TSp). The parameter settings for each method are consistent
with those mentioned in subsection 5.1.

Task 1 (T1). The participants will be randomly assigned to
two scenarios, and the simulation rendering granularity for the two
scenarios will be randomly set to n∗ = 16k or n∗ = 32k. In each
scenario, the five methods will be rendered in a random order, with
each method lasting for 30 seconds. Afterward, the participants will
comprehensively report their sense of realism based on visual expe-
rience, including rendering efficiency, quality, and physical fidelity,
using a 7-point Likert scale rating test. They will also complete
a Cybersickness report based on spatial disorientation, unrealism,
dizziness, and confusion using a 4-point Likert scale. After com-
pleting the report, participants will rest for 30 seconds before pro-
ceeding to the next round with a randomly selected method. Each
two scenarios will have an additional 2-minute break in between,
so each participant will report 2×5 = 10 subjective scores in total.

Task 2 (T2). Participants will be assigned randomly to scenar-
ios with n∗ = 32k. The five conditions will be paired into ten com-
binations, displayed in random order without regard to sequence
within or between pairs. Each pair will be separated by a 1-minute
interval, with each method shown for 30 seconds followed by a 5-
second black screen. Participants will make forced choices on spa-
tiotemporal quality and performance for each pair using the Two-
Alternative Forced Choice (2AFC) method.

5.3.3 Results and Discussion
Realistic and Cybersickness Evaluation. The result distri-

butions of the two reports in T1 are reflected in Figure 9. To validate
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Table 2: Performance comparison of three methods.
baseline n∗ = 16k n∗ = 32k

benchmark PBF-HiRes@128k PBF-HiRes@256k

method LoRes FovFluid[42] Ours Ours-TSp HiRes LoRes FovFluid[42] Ours Ours-TSp HiRes

Si
ng

le
D

am runtime num. ↓ 16k 53.2±18.1k 72.6±27.7k 71.8±27.0k 128k 32k 80.6±42.6k 111.5±52.1k 109.8±48.6k 256k
time (ms) ↓ 18.1 30.6 31.2 30.9 36.6 19.8 31.3 39.7 33.4 52.1

fps stddev. δ ↓ 6.4 11.2 13.2 11.0 7.2 7.9 10.6 14.1 9.6 4.5
PTPE@4.0 τ ↑ 28.34 3.05 1.22 2.86 -0.03 22.77 2.68 -6.21 1.25 -6.72

speed-up ↑ × 2.02 × 1.20 × 1.17 × 1.18 × 2.63 × 1.66 × 1.31 × 1.56

Je
tI

m
pa

ct runtime num. ↓ 16k 51.2±18.8k 88.4±21.3k 84.8±18.1k 128k 32k 93.5±31.0k 159.6±38.0k 153.0±31.1k 256k
time (ms) ↓ 18.2 25.8 32.4 31.2 40.1 19.7 33.6 48.6 44.7 59.7

fps stddev. δ ↓ 7.6 9.6 8.8 8.6 6.3 8.6 9.1 7.3 6.8 4.8
PTPE@4.0 τ ↑ 27.38 10.07 2.63 3.93 -1.92 22.64 1.36 -6.83 -4.76 -9.32

speed-up ↑ × 2.20 × 1.55 × 1.24 × 1.29 × 3.03 × 1.78 × 1.23 × 1.34

Fa
uc

et

runtime num. ↓ 16k 24.8±5.4k 38.5±4.5k 36.5±4.6k 128k 32k 44.7±10.3k 61.6±6.3k 62.0±5.9k 256k
time (ms) ↓ 17.6 20.3 22.2 20.5 31.3 18.9 20.8 23.7 22.7 48.8

fps stddev. δ ↓ 5.7 8.1 9.2 7.2 10.4 9.3 10.1 11.9 10.2 5.8
PTPE@4.0 τ ↑ 30.28 21.42 16.58 21.43 2.79 24.39 19.10 12.15 15.01 -6.10

speed-up ↑ × 1.78 × 1.54 × 1.41 × 1.53 × 2.58 × 2.35 × 2.06 × 2.15
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Figure 9: Realistic and cybersickness evaluation.
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Figure 10: 2AFC results for chosen proportions of method groups.

hypotheses H1, H2, and H3, we conducted t-tests within the base-
lines to compare the statistical differences between the methods.
The significant differences between conditions are marked with as-
terisks (*), with p < 0.05∗, p < 0.01∗∗, and p < 0.001∗∗∗. The
mean report value for each condition is marked with an X . Our
method (including Ours-TSp) shows significant differences in real-
ism and cybersickness compared to FovFluid across different base-
lines, with an increase in the mean value. This confirms our hy-
pothesis H1. Our naive method showed significant differences in
realism compared to HiRes, but when n∗ = 16k, our acceleration
strategy mitigated the temporal significant difference, and even out-
performed HiRes in terms of realism. However, when n∗ = 32k,
our acceleration strategy resulted in noticeable convergence phe-
nomena, leading to slightly lower realism compared to HiRes, with
the increase in cybersickness shown in Figure 9. Therefore, there
is no conclusive evidence to fully support H2, but in low baseline
scenarios, Ours-TSp performs comparably to or even better than
HiRes. Apart from HiRes, our method outperforms all other meth-
ods across any baseline and scenario. For H3, neither set of figures
shows a deterioration in visual perception metrics for Ours-TSp
compared to Ours. In fact, for n∗ = 16k, the acceleration strategy
even enhanced temporal realism. Therefore, H3 holds true.

User Preference. The T2 2AFC experiment results, displayed
in Figure 10, included five groups relevant to this study, represented
as selection rates. We conducted binomial tests to verify significant
differences in user preferences, marking results with asterisks on

the bars (p < 0.05∗, p < 0.01∗∗). In the first group, the accelerated
strategy (Ours-TSp) was marginally favored over the naive (Ours),
though not significantly enough to confirm hypothesis H4. How-
ever, this suggests that our acceleration strategy effectively pre-
serves quality. Against FovFluid, our method, particularly Ours-
TSp, was preferred by over 80% of users, significantly differing
from FovFluid (p = 0.029, p = 0.002), thus supporting hypothe-
sis H5. Our naive method approached almost around 50% prefer-
ence, nearly equal to HiRes, but our accelerated strategy surpassed
HiRes, highlighting the importance of temporal continuity in VR
simulation. No significant difference confirmed hypothesis H6.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

Conclusion. To reconcile quality with efficiency in VR fluid
rendering, we introduced ViP-Fluid, driven by visual perception for
multi-granularity particle simulation and rendering. This approach
utilizes spatiotemporal visual saliency to guide particle dynamics
and employs a PTPE-guided temporal acceleration strategy. Objec-
tive experiments showcased ViP-Fluid’s superior performance in
foveated, salient, and overall metrics, achieving up to 2.15 times
speed-up over high-resolution PBF benchmarks. User studies fur-
ther confirmed its visual advantages and high preference, under-
scoring the effectiveness and user satisfaction with our approach.

Limitations. Our method is suitable for simple boundary con-
ditions and does not account for complex fluid-solid interactions or
the physical interactions between humans and fluid systems, over-
looking the influence of external object motion in complex scenar-
ios. In terms of rendering, due to the use of screen space fluid,
aspects such as lighting, refraction, and caustic effects are not thor-
oughly unbiased, leaving gaps in the analysis of user perception of
luminance changes. Our method does not target large-scale scenar-
ios like oceans. Increased particle numbers and environment scale
need further study for macro-scale perceptual differences.

Future Work. Our method preserved more details in areas of
visual perception interest and provided guidance for future XR sim-
ulation. This paper’s simulation only considered pure fluid interac-
tion or simple boundary coupling, leaving the challenge of fluid-
solid coupling in VR simulation to be addressed. Future research
directions can leverage the different visual perceptions brought by
solids and scene movements to conduct more complex quality and
efficiency balance studies. Similarly, temporal coupling with in-
telligent, data-driven methods can also be considered. VR appli-
cations can continuously explore large-scale open-water rendering
and the physical interactions between humans or avatars and fluids.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Founda-
tion of China through Projects 61932003 and 62372026, Beijing
Science and Technology Plan Project Z221100007722004, and the
National Key R&D plan 2019YFC1521102.

366

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on May 27,2025 at 05:40:57 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. Adaptively sampled
particle fluids. In ACM SIGGRAPH 2007 papers, pp. 48–es. 2007. 2,
4, 6
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[25] S. Premžoe, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker.

Particle-based simulation of fluids. In Computer Graphics Forum,
vol. 22, pp. 401–410. Wiley Online Library, 2003. 2

[26] J. Quarles. Shark punch: A virtual reality game for aquatic rehabili-
tation. In 2015 IEEE Virtual Reality (VR), pp. 265–266. IEEE, 2015.
2

[27] M. Ramasubramanian, S. N. Pattanaik, and D. P. Greenberg. A per-
ceptually based physical error metric for realistic image synthesis. In
Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, pp. 73–82, 1999. 3

[28] J. G. Robson. Spatial and temporal contrast-sensitivity functions of
the visual system. Josa, 56(8):1141–1142, 1966. 2

[29] X. Shi, L. Wang, X. Wei, and L.-Q. Yan. Foveated photon map-
ping. IEEE Transactions on Visualization and Computer Graphics,
27(11):4183–4193, 2021. 3

[30] X. Shi, L. Wang, J. Wu, R. Fan, and A. Hao. Foveated stochastic
lightcuts. IEEE Transactions on Visualization and Computer Graph-
ics, 28(11):3684–3693, 2022. 6

[31] X. Shi, L. Wang, J. Wu, W. Ke, and C.-T. Lam. Locomotion-aware
foveated rendering. In 2023 IEEE Conference Virtual Reality and 3D
User Interfaces (VR), pp. 471–481. IEEE, 2023. 2

[32] B. Solenthaler and M. Gross. Two-scale particle simulation. In ACM
SIGGRAPH 2011 papers, pp. 1–8. 2011. 2, 6

[33] J. Stam. Stable fluids. In Seminal Graphics Papers: Pushing the
Boundaries, Volume 2, pp. 779–786. 2023. 2

[34] M. Stengel, S. Grogorick, M. Eisemann, and M. Magnor. Adaptive
image-space sampling for gaze-contingent real-time rendering. In
Computer Graphics Forum, vol. 35, pp. 129–139. Wiley Online Li-
brary, 2016. 2

[35] M. Stengel, S. Grogorick, M. Eisemann, and M. Magnor. Adaptive
image-space sampling for gaze-contingent real-time rendering. Poster
@ German Conference on Pattern Recognition 2016, Sep 2016. 3

[36] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. A mate-
rial point method for snow simulation. ACM Transactions on Graphics
(TOG), 32(4):1–10, 2013. 2

[37] F. R. Tangherlini. Particle approach to the fresnel coefficients. Physi-
cal Review A, 12(1):139, 1975. 4

[38] N. Truong and C. Yuksel. A narrow-range filter for screen-space fluid
rendering. Proceedings of the ACM on Computer Graphics and Inter-
active Techniques, 1(1):1–15, 2018. 2

[39] W. J. van der Laan, S. Green, and M. Sainz. Screen space fluid ren-
dering with curvature flow. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games, pp. 91–98, 2009. 2, 6

[40] D. Violeau and R. Issa. Numerical modelling of complex turbulent
free-surface flows with the sph method: an overview. International
Journal for Numerical Methods in Fluids, 53(2):277–304, 2007. 2

[41] L. Wang, X. Shi, and Y. Liu. Foveated rendering: A state-of-the-art
survey. Computational Visual Media, 9(2):195–228, 2023. 2

[42] Y. Wang, Y. Zhang, X. Yang, H. Wang, D. Liu, and X. Yang. Foveated
fluid animation in virtual reality. In 2024 IEEE Conference Virtual
Reality and 3D User Interfaces (VR), pp. 535–545. IEEE, 2024. 1, 2,
3, 6, 7, 8

[43] F. W. Weymouth. Visual sensory units and the minimal angle of reso-
lution. American journal of ophthalmology, 1958. 2

[44] G. Yan, Z. Chen, J. Yang, and H. Wang. Interactive liquid splash
modeling by user sketches. ACM Transactions on Graphics (TOG),
39(6):1–13, 2020. 2

[45] F. Zhang, Q. Wei, and L. Xu. An fast simulation tool for fluid anima-
tion in vr application based on gpus. Multimedia Tools and Applica-
tions, 79:16683–16706, 2020. 2

367

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on May 27,2025 at 05:40:57 UTC from IEEE Xplore.  Restrictions apply. 


