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Fig. 1: The ground truth image (GT , left) from the testing set of classroom, foveated images synthesized by our method (Ours, middle)
and by the foveated neural radiance fields method (FoV -NeRF, right). Compared with FoV -NeRF, our method achieves 1.34× higher
PSNR in the foveal region (Ours vs. FoV -NeRF, 32.46 vs. 24.29), and 1.21× higher PSNR in the overall screen space (Ours vs.
FoV -NeRF , 22.47 vs. 18.50). Our method is 1.41-1.46× faster than FoV -NeRF .

Abstract—Foveated rendering provides an idea for improving the image synthesis performance of neural radiance fields (NeRF)
methods. In this paper, we propose a scene-aware foveated neural radiance fields method to synthesize high-quality foveated images
in complex VR scenes at high frame rates. Firstly, we construct a multi-ellipsoidal neural representation to enhance the neural radiance
field’s representation capability in salient regions of complex VR scenes based on the scene content. Then, we introduce a uniform
sampling based foveated neural radiance field framework to improve the foveated image synthesis performance with one-pass color
inference, and improve the synthesis quality by leveraging the foveated scene-aware objective function. Our method synthesizes
high-quality binocular foveated images at the average frame rate of 66 frames per second (FPS) in complex scenes with high occlusion,
intricate textures, and sophisticated geometries. Compared with the state-of-the-art foveated NeRF method, our method achieves
significantly higher synthesis quality in both the foveal and peripheral regions with 1.41-1.46× speedup. We also conduct a user study
to prove that the perceived quality of our method has a high visual similarity with the ground truth.

Index Terms—Virtual Reality, Foveated Rendering, Neural Radiance Fields

1 INTRODUCTION

Constructing complex scenes and presenting high-quality rendering
results at high frame rates for users in virtual reality (VR) can enhance
user experience. Conventional VR rendering methods heavily rely on
3D resources, which require significant design and production costs. It
is difficult to construct new complex VR scene content and present them
in real time using conventional VR rendering methods. Neural radiance
fields methods utilize conventional rendering techniques and learning-
based 3D scene representation techniques to achieve rapid scene content
construction and rendering results synthesis from new views, such as
neural radiance fields (NeRF) [35], D-NeRF [40], and Block NeRF [52].
These methods use a set of images from different views captured in
a given scene as the training set to train a neural network, and then
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use the trained neural network to synthesize rendering results for new
views.

To improve the synthesis performance of NeRF methods, Deng et
al. [8] propose a foveated neural radiance fields method (FoV-NeRF),
which integrates the neural radiance field into the framework of foveated
rendering. But the radiance field representation of the FoV-NeRF loses
the radiance details of salient regions in complex scenes due to the VR
frame rate requirements, which poses a challenge to the foveated image
synthesis quality. Moreover, the FoV-NeRF needs to train multiple
networks to synthesize foveated images, which poses a challenge to the
performance of foveated rendering.

In this paper, we propose the scene-aware foveated neural radiance
fields method (SaF-NeRF) to address the above two challenges. To
address the first challenge, we introduce the multi-ellipsoidal neural
representation (MeNR), which improves the radiance field represen-
tation capability of complex VR scenes with high occlusion, intricate
textures, and sophisticated geometries based on the scene content. To
address the second challenge, we propose the uniform sampling based
foveated neural radiance field framework (US-FNRF), which improves
the foveated image synthesis performance by one-pass color inference,
and improves the foveated image synthesis quality by the proposed
foveated scene-aware objective function in complex VR scenes.

We compare the monocular images of the ground truth (GT ),
foveated images synthesized by our method (Ours) and by the foveated
neural radiance fields method (FoV -NeRF) in the test scene classroom.
The result shows that our method achieves 1.34× higher peak signal-to-
noise ratio (PSNR) in the foveal region, and 1.21× higher PSNR in the
overall screen space compared with FoV -NeRF . Our method achieves
frame rates of 66 frames per second (FPS) in binocular rendering for
head-mounted displays (HMDs) in complex VR scenes. Fig. 1 shows
the comparison in classroom. The region in the yellow circle is the
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foveal region. Details in the rectangular regions are magnified to the
right of each rendered image, the magnification of the green rectan-
gular region in the foveal region is placed in the upper right, and the
magnification of the red rectangular region in the peripheral region is
placed in the lower right. Our method achieves better synthesis quality
in both the foveal and peripheral regions. In the green rectangular
region, the letters on the book cover have noticeable noise and cannot
be recognized by users in FoV -NeRF . In the red rectangular region
near fovea, FoV -NeRF cannot preserve the structure details of the book
spines on the desk that are close to users.

In summary, the contributions of our method are as follows:
• A scene-aware foveated neural radiance fields method, which

synthesizes high-quality foveated images of complex scenes at
high frame rates in VR;

• A multi-ellipsoidal neural representation, which enhances the
neural radiance field representation capability by adjusting the
ellipsoid layer density of different regions adaptively according
to the scene content in complex VR scenes;

• A uniform sampling based foveated neural radiance field frame-
work, which improves synthesis performance and quality by syn-
thesizing foveated images using a single easily trainable network
optimized by the foveated scene-aware objective function.

2 RELATED WORK

In this section, we first introduce the prior work of foveated rendering
in the past five years, then discuss the existing real-time neural radiance
fields methods.

2.1 Foveated Rendering
Guenter et al. [15] firstly propose the foveated rendering framework to
accelerate graphics rendering performance without sacrificing visual-
perception rendering quality. It interpolates three eccentric layers
with different resolutions to the final display resolution based on a
visual acuity fall-off model. According to processed data types, the
research of foveated rendering can be divided into 3D geometry and
2D image/video based foveated rendering.

2.1.1 3D Geometry based Foveated Rendering
In the research of foveated rendering for 3D geometry with mesh data,
Meng et al. [34] propose a GPU-friendly two-pass foveated rendering
pipeline to accelerate foveated rendering. It compresses the foveated
pixel shading process in screen space into low-resolution log-polar
space to reduce pixel shading quantity, and uses the inverse-log-polar
transformation to transform the shading results back into screen space
to output foveated images. Ye et al. [63] further improve the two-pass
foveated rendering pipeline by changing the mapping scheme of the
log-polar transformation to the rectangular mapping transformation,
which preserves the structural details in the peripheral region with a
similar shading quantity. Friston et al. [12] present a foveated rasteriza-
tion pipeline to achieve foveated rendering and reduce aliasing artifacts
in a single perceptual rasterization pass with per-fragment ray-casting.
Tursun et al. [56] propose a luminance-contrast aware foveated ray
tracer based on luminance contrast sensitivity function (CSF) to im-
prove foveated rendering quality. Meng et al. [33] further accelerate
foveated rendering without sacrificing the visual-perception rendering
quality by leveraging the ocular dominance feature of HVS. Franke
et al. [10] improve the performance of foveated rendering by reusing
the pixels in the peripheral region according to the spatiotemporal re-
projection technique. Jindal et al. [21] propose a variable-rate shading
pipeline to control the pixel shading accuracy and the refresh rate of
different regions based on CSF, thereby improving the performance of
foveated rasterization. Shi et al. [47] integrate photon mapping into
the foveated rendering framework to accelerate global illumination
rendering. Then, they integrate stochastic lightcuts into the foveated
rendering framework based on spatiotemporal-luminance CSF to accel-
erate many-lights rendering [48]. Liu et al. [31] propose a stochastic
sampling scheme based on foveated depth of field to achieve longi-
tudinal chromatic aberration and anti-aliasing at the same time. Kim

et al. [24] combine the selective supersampling technique [20] with
the foveated rendering scheme to accelerate real-time ray tracing for
HMDs. Shi et al. [49] parametrically adjust the shading quantity in
the peripheral region based on different locomotion modes to further
accelerate foveated rendering.

Besides mesh data, many researchers focus on 3D geometry foveated
rendering of volume data. Bruder et al. [6] accelerate foveated vol-
ume rendering based on Linde-Buzo-Gray sampling strategy [14] and
neighbor interpolation based on the visual acuity fall-off model. Anan-
piriyakul et al. [1] utilize face tracking to drive the smooth decrease
in volume rendering resolution from fovea to periphery. Bauer et
al. [4] construct a deep neural reconstruction network for reconstruct-
ing foveated sparse volume rendering results to obtain full-resolution
volume rendering results. For accelerating point clouds rendering,
Schutz et al. [45] propose a foveated point clouds rendering method to
achieve the continuous level of detail effects from fovea to periphery.

Existing 3D geometry based foveated rendering methods rely on 3D
resources to construct scene content, which makes it costly to present
new complex scene content for users in VR. The proposed method in
this paper achieves new complex scene exploration in real time based
on captured scene images.

2.1.2 2D Image/Video based Foveated Rendering

In the research of foveated rendering for 2D image/video data, re-
searchers mainly work on accelerating the streaming transmission by
visual-perception models and enhancing the visual-perception quality
of the given image/video data. In the research of foveated streaming
transmission acceleration, Lungaro et al. [32] reduce the image qual-
ity of the peripheral region in 360◦ panorama video transmission to
minimize the bandwidth requirements for panorama video streaming.
Florian et al. [11] propose a collaborative foveated encoding method
to reduce the overall video-streaming bandwidth required for large
high-resolution displays with display walls located at different loca-
tions. Li et al. [29] introduce a log-linear encoding-decoding method
that encodes full-resolution 360◦ video frames based on the visual
acuity fall-off model on the server side and decodes frames on the
client side to improve the image quality of foveated streaming video
frames. Yang et al. [62] adaptively adjust the size of the foveal region
in collaborative foveated rendering to maintain the VR performance
requirements in mobile devices. In the research of the visual-perception
quality enhancement, Kaplanyan et al. [22] use a generative adversarial
neural network to reconstruct foveated rendering videos in the periph-
eral region to improve the peripheral rendering quality of foveated
videos. Walton et al. [57] propose a real-time post-process method to
filter the peripheral region to improve the visual-perception quality of
foveated images. Tariq et al. [53] add procedural noise in the peripheral
region with a specific range of frequencies based on image content
and human perception to achieve more aggressive foveation without
losing visual-perception quality. Deng et al. [8] propose the FoV-NeRF
that uses multiple multilayer perceptrons (MLPs) to synthesize images
in the foveal and peripheral regions based on neural radiance fields
rendering [35], and blends these images together to generate foveated
images in real time. Krajancich et al. [26] introduce the attention-aware
contrast sensitivity model to accelerate foveated rendering when users
allocate attention to the foveal region. Singh et al. [50] design a gaze-
tracked foveated renderer to improve the runtime performance and
energy efficiency when running on a mobile GPU.

The FoV-NeRF can synthesize foveated images for new scenes
based on captured scene images. However, this method cannot per-
form foveated non-uniform radiance inference based on a single neural
representation, and requires training multiple networks to synthesize
images in the foveal, transitional and peripheral regions separately. The
synthesized results generated by multiple networks will lead to image
breakage between the foveal and peripheral regions, which affects the
quality and performance of the foveated image synthesis, and increases
the training cost of the neural radiance fields method. We propose the
US-FNRF that uses a single end-to-end network to synthesize high-
quality foveated images with one-pass color inference for complex VR
scenes.
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2.2 Real-time Neural Radiance Fields
Mildenhall et al. [40] first present NeRF to synthesize novel views
of scenes by optimizing an underlying continuous volumetric scene
function using a sparse set of input views. It recovers fine details
in both geometry and appearance in new views and achieves better
synthesis quality than prior 3D convolutional networks. Researchers
accelerate NeRF to achieve real-time frame rates. Based on the scene
representation modes, we categorize the research of real-time NeRF into
explicit scene modeling-based NeRF and implicit scene representation-
based NeRF. Real-time explicit scene modeling-based NeRF methods
construct explicit structures such as volume, point clouds, octrees, etc.,
to store scene radiance and other features, and accelerate the rendering
process by sampling these structures with ray marching. Real-time
implicit scene representation-based NeRF methods describe scenes
with functions, which can be understood as representing scenes in the
function parameters. It achieves real-time frame rates by compressing
the number of function parameters and reducing the number of samples.

2.2.1 Real-time Explicit Scene Modeling-based NeRF
In the research of real-time explicit scene modeling-based NeRF, Hed-
man et al. [18] construct a sparse 3D voxel grid data structure to store
the learned opacity, diffuse color, and view-dependent effects feature
vector in the training process, and perform ray marching through the
sparse 3D voxel grid to accelerate radiance inference in the testing pro-
cess. To improve the synthesis performance without sacrificing quality,
Yu et al. [65] build a modified NeRF model that predicts spherical
harmonic coefficients instead of color using the same optimization and
volume rendering methods presented in NeRF [40], and samples the
modified NeRF model to construct a sparse voxel-based octree named
PlenOctree that is used for radiance inference in the test process. Wang
et al. [59] extend the PlenOctree to support dynamic scenes by train-
ing the dynamic sequence’s Fourier coefficients directly on the leaves
of a union PlenOctree structure. To reduce the time cost of both the
training and testing processes, Hu et al. [19] propose a valid and pivotal
sampling strategy to accelerate the training process by decreasing the
number of sampling points to eliminate unimportant sampling points,
and construct a two-layer tree-based data structure to store the color and
density for accelerating color inference in the testing process. Zhang
et al. [66] construct a point clouds structure to store the local spher-
ical harmonic coefficients, and propose an end-to-end differentiable
rendering pipeline from point primitives and spherical harmonic coef-
ficients to images for allowing coarse-to-fine first-order optimization
by implementing a differentiable splat-based rasterizer. To accelerate
image synthesis in dynamic scenes, Song et al. [51] decompose the
dynamic scene into three fields: deformation, newness, and static fields,
and introduce a sliding window scheme to represent deformation and
newness features, which are combined with the static feature repre-
sented by a small MLP to infer the final color of the new view. Kerbl
et al. [23] propose the 3D gaussian splatting method (3DGS) that uses
3D gaussian to represent the scene and develops a fast visibility-aware
rendering algorithm to accelerate training and achieve real-time ren-
dering. Although the 3DGS achieves excellent synthesis quality and
performance, integrating the basic idea of the MeNR, that is, using
scene saliency to guide point clouds construction, may further enhance
the representation ability of the 3D gaussian radiance field in salient
regions. And integrating the 3DGS into the framework of US-FNRF
to reduce the number of samples in periphery for foveated rendering
can further improve the synthesis performance without reducing visual
perception quality.

2.2.2 Real-time Implicit Representation-based NeRF
Due to the scene representation being discrete in explicit scene
modeling-based NeRF methods, overlapping and artifacts may oc-
cur when representing complex scenes if the number of parameters in
explicit scene models is insufficient. However, if the number of parame-
ters in explicit scene models is too large, the memory cost cannot afford
high-resolution applications. Therefore, many researchers are dedicated
to studying real-time implicit scene representation-based NeRF meth-
ods. In the research of real-time implicit scene representation-based

NeRF, Neff et al. [38] propose a depth oracle network to predict and
encode the locations of ray samples for each view, and a locally sam-
pled shading network to accumulate ray samples. It improves the NeRF
synthesis performance by reducing the number of samples per ray and
the complexity of ray accumulation shading. Muller et al. [36] propose
a small neural network augmented by a multi-resolution hash table of
trainable feature vectors whose values are optimized through stochastic
gradient descent to encode input for radiance inference, and implement
the whole system using fully-fused CUDA kernels to accelerate image
synthesis. Lin et al. [30] construct the cascade cost volume to output
the 3D feature volume and the coarse scene geometry to guide sampling
for accelerating volume rendering. To handle large motions of dynamic
scenes, Wang et al. [58] introduce a residual radiance field to model
the residual information between the adjacent timestamps in the spatial-
temporal feature space. Deng et al. [8] propose an egocentric neural
representation to represent VR scenes for better synthesizing scene
images from new inside-out views. Then, they use multiple MLPs to
synthesize the images from the egocentric neural representation for the
foveal, mid-peripheral, and far-peripheral regions, and these images are
blended to the final displayed frame.

Since the binocular resolution of VR applications reaches about
2880×1700, existing mainstream graphics cards struggle to meet the
memory requirements of real-time explicit scene modeling-based NeRF
methods when representing complex VR scenes. Existing implicit
scene representations, e.g., the egocentric neural representation in the
FoV-NeRF, use uniform density parameters to represent the radiance of
any region in the scene, ignoring the need to improve the representation
ability of the radiance field in salient regions. We propose the MeNR
to represent the radiance field of complex VR scenes with limited
structure complexity, which adaptively improves the ellipsoid layer
density of salient regions to preserve the scene details. Our method
utilizes the advantages of the MeNR and the US-FNRF to achieve the
goal of synthesizing high-quality foveated images at high frame rates
in complex VR scenes.

3 SCENE-AWARE FOVEATED NEURAL RADIANCE FIELDS

The scene-aware foveated neural radiance fields method (SaF-NeRF)
synthesizes high-quality foveated images efficiently with one-pass color
inference by leveraging the US-FNRF, and uses the MeNR to accurately
represent the radiance field of complex VR scenes based on the scene
content. Fig. 2 visualizes the pipeline of the SaF-NeRF. There are
three steps in the SaF-NeRF: the MeNR construction, the uniform-
space foveated pixel sampling transformation, and the foveated image
synthesis. The generation of the MeNR is performed in step 1. The
construction of the US-FNRF is performed in steps 2 and 3.

Before the training process begins, step 1 constructs the MeNR based
on the estimated saliency and depth of the captured scene images at all
views of a complex VR scene in the training set. During the training
process, step 2 transforms the foveated pixel sampling in the screen
space to a uniform space and outputs the uniform-space foveated pixel
samples based on the given input view and gaze. Then, step 3 gets
the radiance features by traversing the uniform-space foveated pixel
samples in the constructed MeNR, synthesizes the foveated image and
outputs the radii offsets by encoding and decoding the radiance features
through necessary modules. The foveated scene-aware objective func-
tion is formulated to optimize the network based on the synthesized
foveated images, captured scene images, and radii offsets. During the
testing process, the SaF-NeRF synthesizes foveated images of the scene
based on the given view and gaze in real time.

In the SaF-NeRF, uniform space is a topological space that provides
a consistent definition for all regions in a view. It utilizes a non-linear
transformation to compress the peripheral region, ensuring consistent
sampling rates for all regions within the uniform space. The radii
offsets are trainable parameters, which will be accumulated into the
three radii in x, y, z axes of each ellipsoid in the MeNR after each
training session. It aims to optimize the layer density in the MeNR
to enhance its radiance fields representation capability. This aims is
achieved by optimizing the parameters in the network structure based
on the foveated scene-aware objective function.
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Fig. 2: Overview of our method. The MeNR construction is visualized in the blue dashed box, and the US-FNRF is visualized in the red
dashed boxes. In the training process, our method first initializes the MeNR based on the saliency and depth estimation. During the forward
propagation process of training, our method performs uniform-space foveated pixel sampling in the MeNR, then feeds the sampling points to the
radiance coder and goes through other necessary modules to synthesize the foveated image and outputs the radii offsets of N ellipsoids in x,
y, z axes in the MeNR. The radii offsets are then accumulated into the three radii in x, y, z axes of each ellipsoid in the MeNR to complete the
forward propagation of this training session. The network is optimized by minimizing the loss calculated by the foveated scene-aware objective
function. In the testing process, given the view and gaze position, our method synthesizes the corresponding foveated image in real time.

In the rest of this section, we propose the MeNR in section 3.1,
which increases the radiance field representation capability in complex
scenes based on the scene content to improve the synthesis quality of
foveated images. Then, we introduce the US-FNRF in section 3.2,
which builds a single network architecture optimized by the foveated
scene-aware objective function to synthesize high-quality foveated
images efficiently.

3.1 Multi-ellipsoidal Neural Representation

Algorithm 1: MeNR Initialization
Input: views in trainset rays, viewport of camera FOV ,

captured scene images in trainset imgs, width and height
of captured images (W,H), number of ellipsoids N, the
minimum and maximum distances from the originate of
the scene (dmin,dmax)

Output: the initialized MeNR Ω

1 Vol ← initVolume(N)
2 for (img,ray) ∈ (imgs,rays) do
3 salImg← saliency(img)
4 depthImg← depth(img)
5 for px ∈ img do
6 opx,dirpx ← pxPosDir(px,W,H,FOV,ray)
7 depthpx ← scaleDepth(depthImg[px],dmin,dmax)
8 pos← rayCast(opx, dirpx, depthpx)
9 ˆpos← round(pos,N)

10 Vol[ ˆpos]← Vol[ ˆpos] + salImg[px]
11 end
12 end
13 points← GaussianKernelSampling(Vol,N)
14 sortedRadiusx,y,z ← sort(points)
15 Ω← construct(sortedRadiusx,y,z)
16 return Ω

In complex scenes, salient regions are usually concentrated in some
limited ranges rather than spreading over the whole scene [41]. Enhanc-
ing the radiance field representation capability within these regions for
neural radiance fields methods can improve the synthesizing quality
of foveated images. The FoV-NeRF uses a concentric sphere struc-
ture to represent the radiance field of a scene, and this structure has
the same radiance field representation capability for all regions in the
scene. Due to the real-time requirement, the number of sphere layers
in the concentric sphere structure is limited in VR applications, and

the radiance field in salient regions cannot be accurately represented
due to the limited sphere layer density. Therefore, it is necessary to
improve the radiance field representation capability of salient regions
with a limited number of sphere layers. The MeNR adopts a concentric
ellipsoid structure to represent the scene radiance field. It enhances
the radiance field representation capability in salient regions of a scene
by adaptively increasing the ellipsoid layer density of the structure in
these salient regions.

In SaF-NeRF, firstly, we initialize the MeNR based on all views and
captured scene images in the training set. In the MeNR initialization, we
first construct a volume structure centered at the origin of the scene with
a radius of dmax to indicate the saliency of the scene. The volume covers
all regions of the scene. The value of each voxel in the volume indicates
the saliency of the corresponding region in the scene. Then, we sample
the radii of all ellipsoids in x, y, z axes through the importance sampling
based on the saliency values in the volume. This results in more samples
in voxels with high saliency values, and the layer density is higher in
these regions, so the MeNR has better representation capability in
these regions. The unevenness of saliency on the ellipsoidal surface
in the representation does not affect the capability of radiance field
representation. This is because the proposed representation adjusts the
radiance field representation capability by controlling the ellipsoid layer
density based on saliency in different regions. For a specific ellipsoid
in the proposed representation, if the saliency of a certain region on its
surface is high, the representation will increase the layer density around
this region. Conversely, it will decrease the layer density.

Given the views rays in the training set, the viewport of the camera
FOV , the captured scene images imgs in the training set, the width and
height of the captured images (W,H), the number of ellipsoids in the
MeNR N, and the minimum and maximum distances from the originate
of the scene (dmin,dmax), Algorithm 1 initializes the MeNR Ω.

Firstly, the visual-perception sensitivity volume Vol is initialized in
line 1. In the initialization of Vol, we initialize a cube volume structure
with a side length of 2dmax centered at the scene origin to indicate
the saliency of the scene. The number of voxels in the volume is
N×N×N, the length, width, and height of each voxel are all 2dmax

N .

The smallest coordinate of a voxel is ( (1−N)dmax
N , (1−N)dmax

N , (1−N)dmax
N )

and the biggest coordinate is ( (N−1)dmax
N , (N−1)dmax

N , (N−1)dmax
N ). This

volume covers all regions of the scene. The value of each voxel in the
volume indicates the saliency of the corresponding region in the scene.

Then, Algorithm 1 calculates the saliency value for each voxel (lines
2-12). For each image img in the captured image dataset imgs, we use
the graph-based visual saliency method [16] to calculate the saliency
image salImg of img (line 3), and use the monocular depth estimation
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method [13] to calculate depth image depthImg of img (line 4). The
saliency and depth estimation is only used in the MeNR initialization,
which guides the volume construction for sampling radii in the MeNR.
After the MeNR is initialized, the saliency estimation will no longer
be required during training, testing or viewing process. For each pixel
px in img, we calculate the ray origin opx and ray direction dirpx (line
6). opx is the same as its corresponding view position, and dirpx is the
direction vector from the view position opx to the pixel location of px
on the view plane. The depth value in depthImg is in the range of [0,1],
so we use Equation 1 to scale the depth value depthImg[px] to obtain
the estimated depth value depthpx in the scene range (dmin,dmax) (line
7):

depthpx = depthImg[px] · (dmax−dmin)+dmin (1)

where depthImg[px] is the depth value of px in depthImg. Then we
use a ray casting method [42] to get the position pos of px’s hitpoint in
the scene according to opx, dirpx, and depthpx (line 8). We use round
function to calculate pos’s voxel index ˆpos in Vol (line 9). Specif-
ically, for a scene’s position pos in the range of [(−dmax, −dmax,
−dmax), (dmax, dmax, dmax)], the corresponding voxel index ˆpos in
Vol is ⌊ pos+dmax

2dmax+0.001 ·N⌋, where ⌊ ⌋ is the floor operation, and ˆpos ranges
from [0,0,0] to [N−1,N−1,N−1]. Then, we add the saliency value
of px in salImg to Vol[ ˆpos] to get the saliency value of the region in
Vol[ ˆpos] (line 10).

After constructing the visual-perception sensitivity volume Vol, we
use the Gaussian kernel density estimation method [27] to estimate
the probability density function of the scene saliency, and sample N
values based on the significance weight probability density function
to get the sampling point set points (line 13). We sort all the points
in points along x, y, z axes respectively to get the sorted value set
sortedRadiusx,y,z in x, y, z axes (line 14). sortedRadiusx,y,z is regarded
as the radii of all ellipsoids in the MeNR Ω, and we initialize Ω based
on sortedRadiusx,y,z and return Ω (lines 15-16).

In the MeNR initialization, we initialize the radii of all ellipsoids
contained in the MeNR along x, y, z axes. In the rendering pipeline, for
each pixel px, we intersect each ellipsoid in the MeNR based on the
position and direction of px to obtain the sampling point set PT . Then,
PT is fed into the radiance encoder to obtain the final output color of
the pixel through forward propagation. Next, the parameters in the
radiance encoder are optimized through loss function optimization in
backpropagation. The neural radiance field of the scene is represented
by the combination of the MeNR and parameters in the radiance en-
coder, which makes the neuralization of the MeNR. The parameters
in the radiance encoder and the radii offsets are optimized through the
proposed foveated scene-aware objective function (Section 3.2) in back-
propagation. The radii offset optimization improves the layer density
in salient regions of the scene, and the radiance encoder optimization
enhances the precision of radiance field representation.

After the MeNR initialization, we optimize all ellipsoids’ radii in the
representation to adjust the ellipsoid layer density to further improve the
radiance field representation capability. Specifically, after the radiance
sampling of the MeNR for each pixel sample in the input view, the
SaF-NeRF uses a radiance encoder to output the radiance features. In
the MeNR, if the viewpoint moves outside the innermost ellipsoid, rays
may not intersect with the innermost ellipsoid in the MeNR, and the
sampling point with the innermost ellipsoid is set as (0,0,0) and is fed
into the radiance encoder. The value of sampling point (0,0,0) indicates
that the viewpoint does not sample radiance on the innermost ellipsoid.
This is consistent with the conventional NeRF method of sampling
radiance on voxel-based or egocentric radiance field representation.
The radii offset decoder is connected with the radiance encoder to
output the radii offsets, which utilizes the radiance features to guide the
fine tune of all ellipsoids’ radii. Then, the radii offsets are accumulated
to the radii of all ellipsoids to achieve the scene-aware fine tune of
ellipsoid layer density.

3.2 Uniform Sampling based Foveated Neural Radiance
Field Framework

Conventional foveated neural radiance fields methods require building
and training multiple synthesis networks to synthesize rendering im-
ages in the foveal, transitional and peripheral regions, and blending
these images to obtain foveated images, which degrades the synthesis
performance of foveated images. In addition, images from fovea to
periphery synthesized by multiple networks in conventional foveated
neural radiance fields methods need to be accurately aligned based on
the current view. Inaccurate alignment results in breaks, which affects
the synthesis quality of the final blended foveated image. We propose
the US-FNRF, which uses a single network that is optimized by the
foveated scene-aware objective function to synthesize foveated images.
Compared with the conventional foveated neural radiance fields meth-
ods, the proposed framework synthesizes high-quality foveated images
while reducing network complexity in complex VR scenes.

In order to improve the foveated image synthesis quality of our
method, we use a saliency estimation method and a connected-
component labeling method [17] to fully extract scene information
from the training set in the process of network training. For the saliency
estimation results of each captured scene image in the training set
shown in the left side of Fig. 3 (a), we use a connected-component
labeling method to determine the most likely gaze positions of that
captured scene image according to the saliency estimation [16], as
shown in the right side of Fig. 3 (a). Then, the US-FNRF synthesizes
the foveated images based on those analyzed gaze positions for a single
view, as shown in Fig. 3 (b), and optimizes the network based on the
synthesized foveated images and captured scene images at the given
views.

The network architecture of the US-FNRF includes three modules:
the uniform-space foveated pixel sampler module, the inference module,
and the inverse-transformed decoder module. The inference module
has the radiance encoder, and three decoders: color, density, and radii
offset decoders.

The uniform-space foveated pixel sampler module calculates the
position pos and the direction dir of each pixel in the current view. The
radiance encoder intersects N ellipsoids in the MeNR with pos and dir
to get the sampling point set PT with the dimension of [#Puni, N, 3],
where #Puni is the number of pixels in the uniform space.

Then, PT is fed into the radiance encoder in the inference module.
The inference module includes a fully connected layer using the linear
activation function [46] connected with 8 fully connected layers using
the ReLU activation function [2], which is the same as [8]. The first
layer converts PT into a high-frequency feature tensor with the dimen-
sion of [#Puni, N×3×10], and then the high-frequency feature tensor
is fed into the remaining 8 layers to obtain the radiance feature tensor
with the dimension of [#Puni, 256].

The radiance feature tensor is fed into the volume color, density, and
radii offset decoders to get the volume color tensor with the dimension
of [#Puni, N, 3], density tensor with the dimension of [#Puni, N, 1], and
radii offsets tensor with the dimension of [#Puni, N, 3], simultaneously.
The volume color decoder is a fully connected layer using the linear
activation function, the density decoder is a fully connected layer using
the sigmoid activation function [37], and the radii offset decoder has
two fully connected layers using the tanh activation function [28]. We
average the offsets based on the number of pixels #Puni and add them to
the corresponding radius of each ellipsoid to optimize the representation
ability of the MeNR.

In the inverse-transformed decoder module, we first use the volume
rendering method [35] to calculate the color with the dimension of
[#Puni, N, 3] based on the color and density feature tensors, and then
inversely transform the calculated color to the screen space with the
dimension of [W , H, N, 3]. At last, we use a 2D convolutional layer
with the ReLU activation function to denoise the artifacts in periphery
and output the synthesized foveated image. The kernel size is [5,5] and
the stride is [1,1] in the 2D convolutional layer.

The foveated image synthesis process in the US-FNRF is shown
in Algorithm 2. Given the current view ray, the current gaze position
(xg,yg), the width and height of output images (W,H), the camera
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Fig. 3: Gaze position determination in network training. We first estimate the saliency of captured scene images in (a) left, and determine the
most likely gaze positions in (a) right based on the saliency estimation. We visualize the synthesized foveated images at the given view with four
determined gaze positions in (b).

Algorithm 2: Foveated Images Synthesis in the US-FNRF
Input: view ray, gaze position (xg,yg), width and height of

output images (W,H), viewport of camera FOV ,
compression coefficient of rectangular mapping σ ,
MeNR Ω

Output: synthesized foveated image of the current view COL

1 Pscreen ← pxPosDir(ray,W,H,FOV )
2 Puni ← uniformTransform(Pscreen,ray,σ ,xg,yg)
3 P← elliposoidSampling(Puni)
4 RADuni ← radEncode(P)
5 volColuni,densityuni ← ColDenEncode(RADuni)
6 COLuni ← render(volColuni,densityuni)
7 COL′f ov ← inverseTransform(COLuni,xg,yg,W,H)
8 COL f ov ← decodeConv(COL′f ov)
9 return COL f ov

viewport FOV , the compression coefficient σ and the MeNR Ω, the
proposed framework synthesizes the foveated image COL f ov of the
current view and gaze position.

In the uniform-space foveated pixel sampler module, it first con-
structs the position and direction set of pixels in screen space Pscreen
based on the current view ray, the width and height of output im-
ages (W,H) and the camera viewport FOV (line 1). Pscreen is a two-
dimensional list that stores the ray position vector opx and the ray
direction vector dirpx of each pixel in screen space. Secondly, in
order to reduce the number of parameters in the network, the uniform-
space foveated pixel sampler module uses the rectangular mapping
method [64] to compress the screen-space pixel features in Pscreen into
a low-resolution uniform space, and outputs the uniform-space pixel
feature set Puni (line 2). Specifically, for each pixel px whose coordinate
is (x,y) in screen space, we map it to the uniform space coordinate
(u,v) using Equation 2 and assign the pixel feature of Pscreen[x,y] into
Puni[u,v], i.e., Puni[u,v] = Puni[u,v]∪Pscreen[x,y]: u = Nx

(
f ·x

f+abs(x)

)
· W

σ
· (1− xg

W )+
xg
σ

v = Ny

(
f ·y

f+abs(y)

)
· H

σ
· (1− yg

H )+
yg
σ

(2)

where x is in the range of [0,W ]; y is in the range of [0,H]; u is in the
range of [0, W

σ
]; v is in the range of [0, H

σ
]; f is the shading rate decrease

control coefficient and is set to 0.38 [64]. Nx() and Ny() are shown in
Equation 3: 

Nx(x) = x
f ·(W−xg)

f+(W−xg)

Ny(y) =
y

f ·(H−yg)
f+(H−yg)

(3)

The uniform-space foveated pixel sampler module compresses the
pixels in the screen space into the low-resolution uniform space. A
pixel in the uniform space may correspond to multiple pixels in the
screen space, i.e., there exists the rectangle space coordinate (u,v),
such that Puni[u,v] contains multiple position and direction vectors.

We average all position and direction vectors so that each coordinate
position in Puni contains only one position vector and direction vector.

Then, we take the ray origin opx corresponding to all pixels px in
Puni as the position, intersect with the MeNR Ω along the ray direction
dirpx to get the sampling point set p by Equation 4, and construct the
sampling point set P based on the p of all pixels (line 3):

p = opx +

√
∆−B
2A

·dirpx (4)

where ∆ = B2−4AC. A, B and C are calculated by Equation 5:
A = ∑i∈xyz

dirpx[i]2

radius[i]2

B = ∑i∈xyz
2opx[i]·dirpx[i]

radius[i]2

C = ∑i∈xyz
opx[i]2

radius[i]2 −1

(5)

where radius is the radius on x, y, z axes of each ellipsoid in Ω.
In the inference module, we feed the sampling point set P into

the radiance encoder to obtain the radiance feature RADuni (line 4).
Then, RADuni is fed into the volume color decoder and density decoder
simultaneously to obtain the volume color feature volColuni and density
color feature densityuni (line 5).

In the inverse-transformed decoder module, we use the volume
rendering method [35] to estimate the color of all pixels COLuni in the
uniform space based on the volume color feature volColuni and density
color feature densityuni (line 6). The color estimations of all pixels in
RADuni are inverted into the screen space using Equation 6 (line 7),
and the converted radiance features are fed into the 2D convolutional
network for decoding and outputting the synthesized foveated image
(lines 8-9):

RAD[
f ·Nuu

f −Nuu
,

f ·Nvv
f −Nvv

] = RADuni[u,v]
(6)

where (u,v) is the pixel coordinate in RADuni. Nu() and Nv() are shown
in Equation 7: 

Nuu =
u− xg

σ
W
σ
(1− xg

σ
)
· f (W−xg)

f+(W−xg)

Nvv = v− yg
σ

H
σ
(1− yg

σ
)
· f (H−yg)

f+(H−yg)

(7)

Since in foveated rendering, the rendering quality in the peripheral
region can be reduced to some extent without sacrificing the perceptual
rendering quality [49]. The foveated scene-aware objective function
reduces the constraints on the synthesis quality from fovea to periphery
based on the visual acuity fall-off model [15], and optimizes the radii
of all ellipsoids in the MeNR structure to further improve the radiance
field representation capability of the structure. The loss function is
shown in Equation 8:
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min

(
(m · e+ω0)MSE(COL[e],GT [e])+0.001 ∑

r∈rO

r
ρr

)
(8)

where COL is the synthesized foveated image; GT is the ground truth
image of the current view; rO is the radii offsets; ρr is the corresponding
density of r in the MeNR structure; e is the eccentricity angle; m and
ω0 are the coefficients of the visual acuity fall-off model and are set
to 1.65 and 1

48 [15]. The foveated scene-aware objective function
comprises a foveated image loss term and a density-based radii offset
term. The foveated image loss term quantifies the quality degradation of
the synthesized foveated image relative to the ground truth image, based
on the visual acuity fall-off model. The density-based radii offset term
minimizes the radii offsets according to the ellipsoidal layer density in
the MeNR. The density-based radii offset term regards regions with
higher layer density as salient regions, which require finer radii offset
optimization. Consequently, it permits more aggressive fine-tuning
of the radii in these regions, while imposing penalties for larger radii
offsets in non-salient regions. Accurate radii offsets further reduce the
foveated image loss term, thereby enhancing the overall quality of the
synthesized foveated image.

gaze

Fig. 4: Stretching and squeezing visualization of synthesis. We visualize
the ground truth image in (a) where the gaze is at the center of the image.
In (a), the visual acuity decreases from the maximum at the center of
fovea to the minimum at the edge of periphery according to the visual
acuity fall-off model. (b) is the output result of the uniform-space foveated
pixel sampler module in the US-FNRF, and (c) is the final synthesized
result of the US-FNRF.

Fig. 4 shows the stretching and squeezing visualization during the
synthesis process of the US-FNRF. Fig. 4 (a) shows the ground truth
image at a specific view, where the gaze is at the center of the image.
According to the visual acuity fall-off model, the visual acuity decreases
from fovea to periphery. First, the US-FNRF uses the uniform-space
foveated pixel sampler module to perform foveated sampling at the
MeNR. The sampling points are propagated forward into the inference
module, and the inference module outputs the uniform-space foveated
pixel color inference result, as shown in Fig. 4 (b). The output reso-
lution of the inference result is only 1

σ
of that of the ground truth, but

the foveal region with high visual acuity is stretched to occupy most
of the synthesis result, ensuring that the synthesis quality of the foveal
region is not reduced. Then, the inference result is fed to the inverse-
transformed decoder module, and the US-FNRF finally outputs the
foveated image at the current view, as shown in Fig. 4 (c). The foveal
region with high visual acuity is compressed back to the screen space,
while the peripheral region with low visual acuity is stretched in screen
space to synthesize the final foveated image, thus achieving synthesis
performance improvement by reducing the peripheral synthesis quality.

4 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first give the implementation details of our method
(Section 4.1), and then we compare the synthesis quality and per-
formance of our method with FoV -NeRF by the quantitative quality
experiment (Section 4.2) and the quantitative performance experiment
(Section 4.3).

4.1 Implementation Details
We use an HTC Cosmos HMD with Droolon aGlass to track the user’s
gaze position. The HMD is connected to a graphics workstation with a
3.8GHz Intel Core(TM) i7-10700KF processor, 64GB of RAM, and an
NVIDIA GeForce RTX 4090 graphics card. We test the foveated image
synthesis quality and performance of our method in four test complex
VR scenes and two real-world scenes. VR scenes contain two indoor
scenes classroom and o f f ice, and two outdoor scenes park and street.
Real-world scenes contain an indoor scene playroom and an outdoor
scene treehill, and the dataset of real-world scenes are presented in [3].
To construct the datasets of VR scenes, we use a trajectory camera to
roam VR scenes, and then use FFmpeg [55] to perform sparse sampling
during the roam to generate 360 images. We use colmap method [44] to
reconstruct the image set, automatically generating the camera position
and direction corresponding to each image. We randomly select 300
images and their corresponding camera data as the training set, and the
remaining 60 data as the testing set, finally obtaining the datasets of
four complex VR scenes.

To synthesize the foveated images in real time, the network archi-
tecture of our method is built on CUDA-based PyTorch, and CUDA
operators are utilized for MeNR-based sampling, radiance inference,
and volume rendering to enhance the synthesis performance. We use
the SIBR framework [5] for real-time view of synthesis results. In
addition to denoising artifacts in periphery in the network architecture
of the proposed method by the 2D convolutional layer, we implement
a foveated anti-aliasing filter [39] in openGL to reduce the temporal
flickers in periphery before presenting synthesis results to the screen.

Our method adopts an end-to-end training approach. In experiments,
consistent with FoV -NeRF , the optimizer of our method is the Adam
optimizer, the learning rate of our method is 5×10−4, the exponential
decay function with an attenuation parameter of 0.9999954 being used
to tune the learning rate after each iteration, and the number of ellipsoids
in the MeNR N is 64. The compression coefficient σ is set to 2.6, which
is the same as [63]. We train our method with 7000 epochs using the
batch size of 4096, and the average training duration of all scenes is
6.09 minutes.

4.2 Quality
We use peak signal-to-noise ratio (PSNR), structure similarity index
measure (SSIM), and mean squared error (MSE) to quantify the quality
of foveated images synthesized by our method (Ours) and FoV -NeRF .
PSNR [25] evaluates the quality of synthesized foveated images by
comparing the noise between the synthesized images and the ground
truth images. When PSNR is above 30dB, the HVS can hardly perceive
the difference between the synthesized images and the ground truth
images; when PSNR is in the range of 20-30dB, the quality of the
synthesized image is poor compared with the ground truth image;
PSNR below 20dB indicates severe image distortion [54]. SSIM [60]
is an indicator for quantifying the structural similarity between the
synthesized image and the ground truth image based on the theory
of HVS’s structural similarity. The range of SSIM values is 0 to 1,
with larger values indicating higher structural similarity between the
synthesized image and the ground truth image. MSE [7] calculates the
squared intensity differences between the synthesized image and the
ground truth image. The smaller the value of MSE, the smaller the
difference between the synthesized image and the ground truth image.

Fig. 5 (a)-(c) visualize the PSNR, SSIM, and MSE statistic re-
sults of Ours and FoV -NeRF in the foveal region in the testing sets
of six scenes. PSNR of our method is 1.22-1.25× higher than that of
FoV -NeRF in the foveal region. We use p-value [61], Cohen’s d and
its e f f ect size [43] to evaluate the significance of our method’s syn-
thesis quality compared with FoV -NeRF . The significance evaluation
results in the foveal region are shown in Table 1 columns 1-5. Both
p-values and Cohen’s d indicate that our method achieves significant
synthesis quality improvement in PSNR compared with FoV -NeRF .
The mean values of our method’s PSNR are above 30 in all scenes,
which indicates that the synthesized images of our method in the foveal
region achieve no significant perceptual difference compared with the
ground truth images. SSIM and MSE of our method are 1.22-1.25×
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Fig. 5: Synthesis quality quantitative comparison results. We compare the synthesis quality between Ours and FoV -NeRF in the foveal region and
overall screen space in all test scenes by the quantitative metrics: PSNR, SSIM, and MSE.

higher and 2.18-2.42× smaller than those of FoV -NeRF in the foveal
region. When evaluating the synthesis quality using SSIM and MSE,
our method also achieves significant synthesis quality improvement
compared with FoV -NeRF in the foveal region. This is because the pro-
posed MeNR enhances the radiance field representation capability by
improving the ellipsoid layer density of the structure in salient regions,
and the inference network trained by the foveated scene-aware objec-
tive function preserves the structure details in the foveal region. Thus
the image synthesis quality in the foveal region is improved compared
with FoV -NeRF .

Fig. 5 (d)-(f) visualize the PSNR, SSIM, and MSE statistic results
of Ours and FoV -NeRF in the overall screen space in the testing sets
of six scenes. The significance evaluation results in the overall screen
space are shown in Table 1 columns 6-8. Our method achieves better
overall synthesis quality than FoV -NeRF . PSNR, SSIM and MSE of
our method are 1.05-1.10× higher, 1.04-1.10× higher, and 1.19-1.48×
smaller than those of FoV -NeRF . p-values of PSNR, SSIM and MSE
between our method and FoV -NeRF are all below 0.01. Cohen’s d val-
ues show that the overall synthesis quality of our method outperforms

FoV -NeRF significantly in all scenes in PSNR. p-value and Cohen’s
d value indicate that our method achieves a significant improvement
of synthesis quality than FoV -NeRF in both the foveal and peripheral
regions. This is because the MeNR enhances the radiance field repre-
sentation capability, and the US-FNRF controls the decrease in shading
rates while aiming to minimize the loss of scene structural information
in the peripheral region.

To detail the synthesis quality of our method, Fig. 6 shows the
foveated images synthesized by our method (Ours, column 2) and
FoV -NeRF (column 3) compared with the ground truth images (GT ,
column 1) at the views with high occlusion and objects with complex
textures and geometries in six test scenes. The yellow circles on the
image of Ours and FoV -NeRF indicate the foveal regions. We also
crop and magnify the details in both the foveal and peripheral regions
on the right of each rendering image for comparison (up: details in
the green rectangle, down: details in the red rectangle). Our results
are closer to the ground truth images than those of FoV -NeRF . Some
artifacts are shown in the rectangle regions synthesized by FoV -NeRF .
In classroom, mathematical formulas presented on the blackboard are

Table 1: Significance evaluation of our method’s synthesis quality compared with FoV-NeRF. We use p-value, Cohen’s d, and its e f f ect size to
evaluate the significance of synthesis quality between Ours and FoV-NeRF measured by PSNR, SSIM and MSE.

Metric Scene
Fovea Overall Screen Space

p-value Cohen’s d e f f ect size p-value Cohen’s d e f f ect size

PSNR

classroom 7.71×10−73 4.08 huge 4.43×10−10 0.93 large
o f f ice 6.38×10−76 4.26 huge 1.39×10−23 1.62 very large
park 4.14×10−61 3.43 huge 2.46×10−22 1.56 very large
street 2.79×10−82 4.66 huge 9.42×10−31 1.95 very large

playroom 7.55×10−31 1.95 very large 1.02×10−49 2.84 huge
treehill 2.01×10−44 2.59 huge 1.44×10−19 1.43 very large

SSIM

classroom 3.08×10−72 4.04 huge 2.48×10−9 0.88 large
o f f ice 6.50×10−70 3.91 huge 5.21×10−25 1.68 very large
park 6.64×10−58 3.26 huge 2.46×10−24 1.65 very large
street 4.78×10−84 4.77 huge 3.37×10−26 1.74 very large

playroom 3.35×10−30 1.92 very large 1.19×10−41 2.46 huge
treehill 1.76×10−51 2.93 huge 1.58×10−26 1.75 very large

MSE

classroom 1.33×10−41 2.45 huge 1.50×10−44 2.59 huge
o f f ice 3.94×10−52 2.96 huge 2.76×10−99 5.84 huge
park 1.38×10−29 1.90 very large 1.37×10−84 4.81 huge
street 1.24×10−46 2.69 huge 1.78×10−91 5.27 huge

playroom 2.33×10−11 1.00 large 2.90×10−14 1.16 large
treehill 7.91×10−14 1.14 large 4.72×10−64 3.58 huge
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not distinctly synthesized in the foveal region, and the textures of the
book spine and milk carton lose their readability in the peripheral region
adjacent to fovea. In o f f ice, the hands and time markings of the clock
in the foveal region are excessively blurry, and there is noticeable loss
of leaf veins on the leaves in the peripheral region adjacent to fovea.

In park, the texture details on the door in the foveal region and on the
window in the peripheral region are missing in FoV -NeRF . In street,
the star on the door is blurred in the foveal region, and the outline of
the rear of the car disappears in the peripheral region in FoV -NeRF . In
playroom, the outline details of the keyboard and mouse are lost in the
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Fig. 6: Visualization of synthesized results comparison. We visualize the ground truth images GT (column 1), synthesized results of Ours (column 2),
and FoV -NeRF (column 3) in all test scenes. Then, we magnify the details in the rectangular regions and place them on the right of each image for
comparison.
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Fig. 7: Synthesized results comparison of different neural representations. We visualize the synthesized results of our method using the MeNR and
the egocentric neural representation (ENR) in o f f ice, and magnify them to compare the details in the rectangular regions on the right side.

foveal region, and the letters on the book synthesized in the peripheral
region are also too blurry in FoV -NeRF . In treehill, the details of the
epidermis on the trunk in the foveal region cannot be retained, and the
structural details of the distant tree tops through the branches are lost
in the peripheral region in FoV -NeRF .

To verify the effectiveness of the MeNR, we also compare our
method’s synthesis quality when representing the neural radiance field
using the MeNR and the egocentric neural representation (ENR) [8]
in o f f ice, as shown in Fig. 7. The foveated image synthesized by
the MeNR can better preserve the details of the book spine texture
in the foveal region and the reflection details of the metal sphere in
the peripheral region compared with the ENR, although the foveated
image synthesized by the ENR preserves the scene structure informa-
tion to some extent. Compared with the ground truth, PSNR, SSIM,
and MSE of the MeNR are [30.2,0.76,80.14] in the foveal region,
and [20.3,0.51,392.56] in the overall screen space. PSNR, SSIM, and
MSE of the ENR are [26.5,0.66,135.18] in the foveal region, and
[19.4,0.49,470.64] in the overall screen space. All quality assessment
metrics indicate that the foveated image synthesis quality of the MeNR
is superior to the ENR.
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Fig. 8: Performance comparison results. We plot the average time cost
of Ours and FoV -NeRF in color inference and post-processing steps in
o f f ice.

4.3 Performance

Fig. 8 shows the time cost of color inference and post-processing on
step 1 and step 2 separately using our method and FoV -NeRF to syn-
thesize foveated images at novel views for both eyes in o f f ice. In step
1, FoV -NeRF needs to perform color inference for the foveal region
and the peripheral region separately. In step 2, FoV -NeRF blends the
foveal and peripheral synthesized images and anti-aliases the blended
images. Our method performs color inference for both foveal and pe-
ripheral regions simultaneously in step 1, and only needs to perform
anti-aliasing filtering to enhance visual fidelity in the peripheral region
without image blending in step 2. Our method achieves the average
frame rate of 62FPS. Since our method only requires a single color
inference in step 1, thereby avoiding the redundant synthesis of images
in the foveal region compared with FoV -NeRF , so our method’s perfor-
mance in step 1 is 1.44× better than FoV -NeRF . The proposed MeNR
also significantly improves the image synthesis quality while maintain-
ing our inference network complexity comparable to FoV -NeRF . In
step 2, since our method doesn’t need to blend images, it achieves a
performance improvement of 1.77× compared with FoV -NeRF . Ul-
timately, our method achieves a significant improvement in synthesis
quality in both the foveal and peripheral regions, while also enhancing
performance by 1.46× compared with FoV -NeRF .

Fig. 9 shows the relationship between the performance and the
foveal (a) and overall (b) synthesis quality in o f f ice for our method and
FoV -NeRF . For our method, when the foveal PSNR reaches 30.2dB
and the overall PSNR reaches 20.3dB, further enhancing the synthesis
quality becomes challenging with a significant reduction in synthesis
performance. Compared with FoV -NeRF , our method consistently
achieves higher synthesis quality at similar performance levels. In
FoV -NeRF , when the foveal PSNR reaches 24.5dB and the overall
PSNR reaches 18.8dB, increasing network complexity has a limited
impact on improving synthesis quality while the performance sharply
decreases.

5 USER STUDY

We design a within-subject study [9] to evaluate the perceptual synthesis
quality of our method in two indoor test scenes classroom and o f f ice,
and two outdoor test scenes park and street.

Conditions We use our method as an experimental condition (EC),
and EC uses our method to synthesize foveated images of four test
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Fig. 9: Ablation experiment results. We visualize PSNR of Ours and
FoV -NeRF as a function of the synthesis performance in o f f ice in the
foveal region (a) and in the overall screen space (b). The average
synthesis time consuming of our method is 5.63ms, 9.23ms, 15.57ms,
27.81ms, 50.31ms, where σ is set to 3.9, 3.3, 2.6, 2.0, 1.4, and N is set to
32, 48, 64, 80, 96. The average synthesis time consuming of FoV -NeRF
is 6.31ms, 12.47ms, 22.51ms, 31.73ms, 53.71ms, where the number of
spheres in the egocentric neural representation is set to 16, 40, 64, 88,
112, and the parameter of each layer in the radiance encoder is set to
64, 128, 256, 512, 1024.

scenes: classroom, o f f ice, park, and street. The first control condition
(CC1) is the ground truth rendering results of four test scenes. The
second control condition (CC2) uses FoV -NeRF to synthesize foveated
images of four test scenes.

Participants and Setup We recruit 20 participants (15 males and 5
females, aged between 21-30) in the user study, and 13 of them have
had experiences in VR HMDs. The participants are asked to sign a
consent form approved by the biology and medical ethics committee
of Beihang University. We use an HTC Cosmos HMD with a Droolon
F1 gaze tracker to track the gaze motion of the participants. The
resolution of the HMD is 1440×1700 pixels for each eye, and the
field-of-view is 97◦. The HMD is connected to a PC workstation with a
3.8 GHz Intel(R) Core(TM) i7-10700KF CPU, 64 GB of memory, and
an NVIDIA GeForce RTX 4090 graphics card.

Task 1 To ensure a fair perceived quality comparison of each
method, we fix the animation view sequence, with a duration of 10
seconds for each scene’s animation view sequence. In Task 1, we test
various scenes from the classroom to o f f ice. In each scene, we com-
mence by presenting the participants with the animation of the fixed
view sequence rendered by CC1 and telling the participants that this
is the ground truth. Subsequently, we present the participants with
the animation of the fixed view sequence generated by EC, CC1, and
CC2 in randomized order. In the task process, the participants are
asked to score the perceptual visual quality of the animation after each
animation is presented. The visual quality score η [49] contains 5
confidence levels: 5 represents that they cannot perceive artifacts at all,
4 represents that they can perceive acceptable artifacts at a few very
short moments, 3 represents that they can perceive acceptable artifacts,
2 represents that they can perceive noticeable artifacts, and 1 represents
that they can perceive obvious artifacts. After this animation is scored,
the next animation comes in. Each participant spends an average of 8
minutes. The data of 20 (participants) × 4 (scenes) × 3 (methods) =
240 trials are collected.

Task 2 In Task 2, we compare the perceptual synthesis quality
between EC and CC2 in four test scenes. We pair the animations
synthesized by EC and CC2 for all test scenes, and the order in the pair
is randomized. The view sequence of each animation for each scene is
the same as Task 1. Then, we present two animation sequences with
a short interval of black in each pair to the participants. The interval
duration is the same as Guenter et al. [15] (0.5s). In the task process, the
participants are asked to press one of the two buttons (1 or 2) to answer
the question "Which animation is synthesized with higher quality?"
after being presented with each pair. After this, the next pair comes

in. Each participant spends an average of 5 minutes. The data of 20
(participants) × 4 (scenes) = 80 trials are collected.

Fig. 10: The visual quality score η of the participants in Task 1. X-axis
shows the average values and standard deviations of η of each pair.
Y-axis lists the pair accordingly.

Results and Discussion Fig. 10 gives the average values and
standard deviations of η under all conditions. The average values and
standard deviations of η under [EC, CC1, CC2] are [4.45,4.20,3.28]
and [0.25,0.31,0.48] in the indoor scenes, and [4.58,4.25,3.23] and
[0.22,0.47,0.60] in the outdoor scenes. p-values of η under [EC, CC1,
CC2] are [0.42,0.80,0.83] between the indoor and the outdoor scenes.
The values of Cohen’s d under [EC, CC1, CC2] are [0.18,0.06,0.05]
between the indoor and the outdoor scenes where the corresponding
e f f ect sizes are all very small. The statistical results of η indicate that
the perceptual synthesis quality of [EC, CC1, CC2] has no significant
difference between the indoor and the outdoor scenes.

p-values of η between EC and CC1 is 0.14, and Cohen’s d is 0.33
where the e f f ect size is small. It indicates that the perceptual synthesis
quality of our method is similar to GT . p-values of η between EC and
CC2 is 4.99× 10−9, and Cohen’s d is 0.96 where the e f f ect size is
large. The probability that η is equal to or greater than 4 under EC
exceeds 80%, while η has only 44% under CC2. According to the
participants’ feedback, in the animation of multiple scenes under CC2,
participants do not pay much attention to the low-quality synthesized
results in the peripheral region. However, they can obviously perceive
blurs and artifacts in the foveal region at certain times, which makes
it difficult for η under CC2 to reach 4. The statistical results of η

show that our method achieves significantly better perceptual synthesis
quality than FoV -NeRF .

Fig. 11: The participants’ preference votes of EC and CC2 in Task 2. X-
axis shows the percentage of selecting the condition of each pair. Y-axis
lists the pair accordingly.

Fig. 11 compares the participants’ preference votes of EC and CC2
in the test scenes. The number of votes that the participants cast for
EC exceeds those cast for CC2 by 3.8×. According to the participants’
report, animations in EC are smoother while animations in CC2 are
real-time, and animations in EC better preserve scene details in the
foveal region. Therefore, the participants prefer EC. Additionally, the
participants who choose CC2 regard that they will pay more attention to
the synthesized details in the peripheral region because they are aware
that this is foveated rendering. In some very short segments, animations
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in EC have more noticeable flickering compared with CC2, so they
tend to choose CC2.

6 CONCLUSION, LIMITATION, AND FUTURE WORK

We have proposed a scene-aware foveated neural radiance fields method,
which provides a high-precision neural radiance field representation
in complex VR scenes and a single network to synthesize high-quality
foveated images efficiently. The perceived quality of foveated images
synthesized by our method shows no significant difference compared
with the ground truth images. The frame rate of foveated images
synthesized by our method in HMDs achieves 66FPS. Compared
with FoV -NeRF , our method achieves a 1.41-1.46× speedup while
significantly enhancing image synthesis quality in both the foveal and
peripheral regions.

There are some limitations in our method. Firstly, our method does
not consider the temporal information of the scene. It cannot synthesize
high-quality foveated images for dynamic VR scenes. Therefore, a
potential future work is to enhance the radiance field representation and
the radiance field sampling algorithm based on the scene’s temporal
information, thus achieving foveated images synthesis for dynamic
scenes in real time. Secondly, the US-FNRF is based on the rectangular
mapping for encoding and decoding, which does not preserve the sam-
pling density of salient parts in the peripheral region. Another potential
future work is to propose a novel mapping strategy in the US-FNRF
to adaptively identify the peripheral salient parts and preserve these
parts’ sampling density to improve the foveated image synthesis quality
further. Our method does not set a limit on the range of viewpoint
translation. The representation structure is learned from the images and
corresponding camera parameters in the training set based on the idea
of implicit representation-based NeRF methods. Thus, like the existing
implicit representation-based NeRF methods, if the position of the
viewpoint exceeds the coverage range of the camera translation in the
training set, the radiance field representation structure lacks radiance
samples from the relevant viewpoint, and the quality of the synthetic
results will significantly decrease. In future work, in order to synthe-
size reasonable foveated images when the viewpoint moves out of the
coverage range, we will try to use generative methods combined with
features extracted from other scene datasets to complete the radiance
beyond the coverage of the training set.
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