
Scene-aware Foveated Rendering

Runze Fan, Xuehuai Shi, Kangyu Wang, Qixiang Ma, and Lili Wang

GT Ours Hyp Log-Polar Rectangular RectlinearOurs

GT

Fig. 1: Left: Comparison of the proposed foveated rendering (lower-left) and the full-resolution rendering (ground truth, GT,
upper-right). Right: As illustrated in the close-ups of the rendered images, compared with the Hyp method [1], the Log-Polar
method [2], the Rectangular method [3], and the Rectlinear method [4], our results are closer to the ground truth, and are able
to retain clearer details in the periphery region with the same compression ratio as the above methods.
Abstract— We propose a new scene-aware foveated rendering method, which incorporates the scene awareness and
characteristics of the human visual system into the mapping-based foveated rendering framework. First, we generate the
conservative visual importance map that encodes the visual features of the scene, visual acuity, and gaze motion. Second, we
construct the pixel size control map using a convolution kernel method. Third, we utilize the pixel size control map to guide the
foveated rendering. At last, a temporal coherent refinement strategy is used to maintain the smooth foveated rendering for the
adjacent frames. Compared to the state-of-the-art mapping-based foveated rendering methods using the same compression
ratio, our method achieves smaller MSE, higher PSNR, and SSIM in the fovea, periphery, salient regions, and the whole
image. We also conducted user studies, and the results proved that the perceptual quality of our method has a high visual
similarity with the ground truth rendered with the full resolution.

Index Terms— Virtual reality, Foveated rendering, Visual importance, Pixel size control

1 INTRODUCTION

Virtual Reality (VR) is widely used in more and more fields such as
entertainment and gaming, culture and tourism, and manufacturing,
which puts higher demands on the realism and efficiency of ren-
dering. Foveated rendering techniques provide a possible solution
to accelerate rendering without compromising visual perceptual
quality. It utilizes characteristics of the Human Visual System
(HVS) to reduce computational costs and improve performance by
rendering only content that is actively perceived by the user [5].

Many researchers have investigated rasterization-based and ray
tracing-based foveated rendering [1, 6–15]. To avoid repeated
rendering and waste of computational resources, more general-
ized mapping-based foveated rendering methods have been pro-
posed [2–4]. These methods use a typical deferred shading pipeline.
First, they generate the g-buffer in the regular geometry pass. Then,
they employ a mapping function to map the original g-buffer to a
reduced resolution mapped g-buffer. Subsequently, uniform shad-
ing is carried out on the mapped g-buffer, and the final rendering
results are generated using the inverse mapping function. Different
from [13–15], these methods consistently take into account the
sampling rates for both rasterization and shading, and allow for
continuous non-uniform compression. However, existing mapping-
based foveated rendering methods use relatively simple mapping
and inverse mapping functions that are constructed only based on
characteristics of the HVS without being aware of the scene, i.e.,

• Lili Wang is with State Key Laboratory of Virtual Reality Technology
and Systems, Beihang University, Beijing, China; Peng Cheng
Laboratory, Shengzhen, China. Lili Wang is the corresponding author.
E-mail: wanglily@buaa.edu.cn.

• Runze Fan, Kangyu Wang and Qixiang Ma is with State Key
Laboratory of Virtual Reality Technology and Systems, Beihang
University, Beijing, China. E-mail: by2106131@buaa.edu.cn,
sy2306314@buaa.edu.cn, sycamore_ma@outlook.com.

• Xuehuai Shi is with Nanjing University of Posts and
Telecommunications. E-mail: xuehuai@njupt.edu.cn.

Manuscript received 14 March 2024; revised 4 June 2024; accepted xx
xxx. 201x. Date of Publication xx xxx. 201x; date of current version xx xxx.
201x. Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

they do not consider the visual features of the scene, which results
in poor rendering quality in locations with high visual features in
the periphery region. Recent studies show that peripheral vision is
fundamental for many visual tasks, including walking, driving, and
aviation. Many visual features, such as salient features, are con-
stantly processed in the periphery region [16]. To further improve
the quality of visual perception, it is crucial for foveated render-
ing to maintain the high-quality visual features in the periphery
region [5, 17, 18].

In this paper, we propose a scene-aware foveated rendering
method, which incorporates the scene awareness and characteris-
tics of the HVS into the mapping-based foveated rendering frame-
work. Scene awareness means the detection and processing of
visual features of the scene, and HVS is characterized by visual
acuity and gaze motion. We use the conservative visual importance
map to encode the visual importance distribution. Unlike the previ-
ous mapping-based foveated rendering methods, we use the pixel
size control map to guide the allocation of computing resources for
each pixel. First, we generate the conservative visual importance
map, which encodes the visual features of the scene, visual acuity,
and gaze motion and keeps the total cumulative importance of the
map constant. Second, we construct the pixel size control map
with a convolution kernel method based on the conservative visual
importance map. Third, foveated rendering is executed with the
guide of the pixel size control map. At last, a temporal coher-
ent refinement strategy is used to maintain the smooth foveated
rendering for the adjacent frames.

Compared to the state-of-the-art methods, our method achieves
smaller MSE, higher PSNR, and SSIM in the fovea, periphery,
salient regions, and the whole image. Our method has a sim-
ilar performance as the previous methods and achieves 1.65×
speedup with similar visual perceptual quality compared to the full-
resolution rendering. We also conducted user studies, which proved
that the perceptual quality of our method has a high visual similar-
ity with the results of the full-resolution rendering. Fig. 1 shows
the rendering results of our method. The close-ups illustrate the
rendering details in the periphery region of our method compared
to the full-resolution(ground truth, GT), the Hyp method [1], the
Log-Polar [2], the Rectangular [3] and the Rectlinear methods [4].

In summary, the contributions of this paper are: 1) a new scene-

aware foveated rendering pipeline; 2) a conservative visual impor-
tance map, which encodes the visual features of the scene, visual
acuity, and gaze motion and keeps the total cumulative importance
of the map constant; 3) a pixel size control map to guide the alloca-
tion of computing resources and a convolution kernel method to
construct this map; 4) a temporal coherent refinement strategy to
maintain the temporal consistency of the visual importance for the
adjacent frames, which leads to smooth foveated rendering.

2 RELATED WORK

In this section, we first give a brief review of the research on
foveated 3D rendering, and then discuss the methods to improve
the visual quality of periphery region. For a more comprehensive
review of foveated 3D rendering, we recommend the readers refer
to the reviews [19, 20].

2.1 Foveated 3D rendering
Early research in the foveated 3D rendering focused on ray tracing
based methods [6–11]. To further improve rendering efficiency,
some researchers focused on rasterization-based foveated render-
ing. Guenter et al. [1] rendered three image layers around the gaze
point with discrete sampling rates. The fovea region is repeatedly
rendered 3 times, which lowers the efficiency of the rendering.
Stengel et al. [17] linearly expanded the fovea region based on the
gaze motion vector, resulting in smooth following of gaze motion.
This method also suffered from wasted computational resources.
Turner et al. [21] used multiple low-resolution results and one
high-resolution result to generate the final result by aligning the
rendered pixel grid in the periphery region to the virtual scene
during rasterization.

Many researchers worked on avoiding repeated rendering of
the fovea region. Inspired by the Coarse Pixel Shading technique
[22] (CPS), Patney et al. [5] decoupled shading and visibility by
quantizing the shading rate into a finite set of screen-aligned grids
and achieved foveated rendering by sampling coarse pixels in the
periphery region. Similiar, Variable Rate Shading [14] (VRS)
increased the rendering performance and quality by varying the
shading rate for different regions of the image. These CPS or VRS-
based methods can shade the scene at a variety of rates, including
the non-square fovea region. However, these methods require
the adaptive shading feature, which is not yet supported on some
commodity GPUs.

Inspired by that the excitation of the cortex can be approximated
by a Log-Polar mapping of the eye’s retinal image [23, 24], Meng
et al. [2] proposed a two-pass foveated rendering pipeline that pa-
rameterizes foveated rendering by introducing a polynomial kernel
function in the Log-Polar coordinate mapping. Similarly, Ye et
al. [3] proposed a rectangular mapping-based foveated rendering
method, which processed the horizontal and vertical directions
independently. Li et al. [4] expanded the Log-Polar mapping to
the field of foveated 360-degree video streaming, and proposed a
rectilinear foveated mapping method, which also processed the hor-
izontal and vertical directions independently. While these mapping-
based foveated rendering methods avoid repeated rendering of the
fovea region, none of them take into account the quality decrease
of the periphery region where the visual features of the scene are
located.

Our scene-aware foveated rendering method belongs to the
mapping-based foveated rendering framework. It takes into ac-
count both the user’s visual acuity and gaze motion, as well as the
visual features of the scene.

2.2 Improve the Visual Quality in Periphery Region
In the foveated rendering, blurred rendering results for the periph-
ery region with visual features can make users perceive a decrease
in the visual quality. Therefore, many methods have been proposed
to improve the visual perceptual quality of the periphery region.

Stengel et al. [17] allocated computational resources to pixels
based not only on visual acuity but also on gaze direction, eye
movements, contrast, and brightness. Okan et al. [25] and Shi et
al. [26] improved visual quality in the periphery region by analyz-
ing the local luminance contrast of the image. Walton et al. [27]
computed a feature pyramid consisting of steerable filter responses
on multiple scales and generated a new image based on the ex-
tracted statistics by collapsing this pyramid, resulting in high visual
quality in the periphery region. Krajancich et al. [28] proposed
an attention-aware foveated rendering method. It analyzes the
factors affecting periphery visual perception, such as illumination

and attention, and adaptively adjusts the spatial resolution of the
rendered images in the periphery region according to these factors,
thus improving visual quality in the periphery region. Lisboa et
al. [29] analyzed the effect of movement on the perception of pe-
riphery region in VR and gave a relationship between movement
speed and foveated rendering parameters.

Many methods have been proposed to adjust the resolution of
the rendered images in the periphery region by using frequency
analysis. Jindal et al. [30] proposed a Just-noticeable-difference
resolution based on frequency domain analysis, and determined the
resolution of the periphery region based on the content-adaptive
metric of judder, aliasing, and blur. Denes et al. [31] proposed a
visual perceptual model that predicts the just-noticeable-difference
resolution by giving an object velocity and predictability of motion.
Taimoor et al. [32] gave the range of frequencies that are detectable
but not distinguishable at a given eccentricity. These frequencies
were replaced by noise generated in a less costly post-processing
step to improve the visual quality in the periphery region.

Besides, with the development of deep learning techniques
[33, 34], many researchers have applied them in foveated ren-
dering to improve the quality in the periphery region. Deng et
al. [35] proposed FoV-NeRF, which improves the visual quality
in the periphery region by adjusting the sampling density of the
3D neural representation. Bauer et al. [36] proposed FovolNet, a
fast-foveated deep neural network, and the visual quality in the
periphery region could be improved easily with the reconstruction
network. Kerbal et al. [37] proposed 3DGS which has greatly
improved the performance and quality compared with previous
NeRF-base methods, which provides a basis for further improving
the efficiency and quality of foveated rendering.

Our method focuses on improving the visual quality in the
periphery region for the mapping-based foveated rendering method.

3 METHOD

3.1 Pipeline
We propose a scene-aware foveated rendering method. Our method
adopts a typical deferred shading pipeline. The pipeline is shown
in Fig. 2. There are three main steps in our foveated rendering
process: Step 1: generating the conservative visual importance
map (Section 3.2); Step 2: constructing the pixel size control map
(Section 3.3); Step 3: foveated rendering guided with the pixel size
control map (Section 3.4).
3.2 Conservative Visual Importance Map Generation
3.2.1 Definition
The conservative visual importance map cvimH,W is a 2D map,
where H and W are the vertical and horizontal resolutions of the
g-buffer. The value of each pixel in cvim represents the visual
importance of the scene at the corresponding location. The visual
importance ranges from 0 to 1 and can be calculated based on
the visual features of the scene, visual acuity, and gaze motion.
Conservation means that the sum of the visual importance values
of all pixels in cvimH,W is always constant h×w, where h and w
are the vertical and horizontal resolutions of the mapped g-buffer.

3.2.2 Generation
Weier et al. [20] summarized the factors that influence human
visual perception, such as eccentricity, visual features, and gaze
motion. Inspired by this idea, we first construct a visual acuity
map based on eccentricity. Then, we extract a visual feature map
according to the scene. Finally, we combine them to generate the
visual importance map with consideration of gaze motion. The
visual acuity map, the visual feature map and the visual important
map are generated for each frame.
Visual Acuity Map Construction. A visual acuity map vamH,W
is a 2D map of the same size as the g-buffer, in which the pixel
value indicates the user’s visual acuity (measured in terms of the
minimum angle of resolution) according to the gaze point. Given
the gaze point, the acuity a of each pixel in vam is computed with
the visual acuity model [1]. The model uses acuity limit w0 and
acuity slope m to characterize the user’s visual acuity.
Visual Feature Map Extraction. A visual feature map v f mH,W
is a 2D map of the same size as the g-buffer, in which the pixel
value indicates the intensity of the scene’s visual features. We
take the low-level visual features, such as saliency, into account to
generate the visual feature map. Given a g-buffer, we detect the
object saliency, silhouette, and highlight and combine them to get
the visual feature value f ([0,1]) of each pixel with the perceptual
filter method [17].

g-buffer

gaze point

gaze
motion

visual feature map

visual acuity map

conservative visual
importance map

cvim Generation

kernel

pixel size
control map

pscm
Construction

mapped
g-buffer

rbuffer

fbuffer

Foveated Rendering

g-buffer inverse
mappingmapping

render

Fig. 2: There are three main steps in our foveated rendering process. In the cvim generation step, the visual acuity map is generated
according to the gaze point, and the visual feature map is extracted based on the g-buffer. Then, the conservative visual importance map is
constructed by combining the visual feature map and the visual acuity map according to the gaze motion. In the pscm construction step, the
convolutional kernel is first built according to HVS. Next, the convolution is operated with the kernel to construct the pixel size control map.
In the foveated rendering step, g-buffer is first transformed to a mapped g-buffer. Then, reduced-resolution rbuffer is rendered based on the
mapped g-buffer. The final full-resolutuon fbuffer is generated based on the inverse mapping.

Visual Importance Computation. The visual importance vi in
cvim indicates the visual perceptual importance of each pixel to
the HVS. Visual acuity a rates human’s ability to recognize small
details with precision. When measured in terms of the minimum
angle of resolution, the larger a, the larger the smallest detail that
can be distinguished, and details of the same size are less visually
important to the HVS. Thus vi is inversely proportional to visual
acuity a,i.e.,vi ∝ 1/

a.
Visual feature f indicates the intensity of the scene’s visual

features, which attracts people’s attention. The larger f , the more
attention is attracted to the pixels with visual features, i.e., the
greater visual importance of these pixels to the HVS. Thus vi is
positively related to visual feature f . Strasburger et al. [38] used the
spotlight of attention to describe the phenomenon in HVS where
attention is attracted to a specific area caused by visual features.
Marzecov et al. [39] characterized this mechanism as a gain-control
model with attention amplifying the response to the stimulus, the
amplification factor is gain. Wang et al. [40] and Sam et al. [41]
proposed the linear or nearly linear relationship between gain
and visual feature. According to the previous work, vi is directly
proportional to the intensity of visual features f ,i.e.,vi ∝ 1+ k · f .
1 indicated the original vi caused by other factors, such as visual
acuity. k is a weight of f and can be obtained with a pilot user
study.

Reddy et al. [42] pointed out the relationship between visual
acuity and the velocity at which details crossed the retina (gaze
motion), where visual acuity was inversely proportional to the gaze
motion influence function G(v), and v represents the gaze motion
velocity.

Based on the above analysis, the visual importance is calculated
with Eq. 1.

vi =
G(v)

a
+

k · f
a

(1)

The reason the molecule of the second term of the Eq. 1 is not
multiplied by G(v) is that G(v) is used to describe the effect of
the gaze motion (velocity) on visual acuity (the 1 part in 1+ k · f).
While k · f is used to describe the attention effect of visual features
on visual acuity, which is independent of G(v).

For the mapping-based foveated rendering methods, the compu-
tational resources are fixed, which requires that the conservation of
the visual importance map, i.e., the sum of the visual importance
must remain constant. Therefore, the final visual importance is
normalized with the function NorVi (Eq. 2).

NorVi(vi) = hw · vi/∑(vi) (2)

3.3 Pixel Size Control Map Construction
3.3.1 Definition.

The pixel size control map pscmH,W is a 2D map with the same size
as cvim. pscm is used to control the corresponding pixel size in the
g-buffer after mapping. Each element of pscm has two components
representing the vertical and horizontal size of the pixels. These
sizes are calculated according to the visual importance.

We choose a map-based approach to control the size of the
mapped pixel instead of the conventional mapping function-based
approach to generate the mapped g-buffer. This is because existing
methods, such as [2–4], only consider the visual acuity associated
with the gaze point, so it is relatively easy to find the mapping
function. Our scene-aware method not only considers the visual
acuity but also the visual features of the scene. Since the density
and location of the visual feature vary with the scene, it is difficult
to fit with a single function.

3.3.2 Construction
In this section, we first introduce how to compute the mapped
pixel size based on the characteristics of visual acuity. Then, we
introduce how to add the influence of the visual feature into the
pixel size computation, i.e., how to compute the pixel size based
on the visual importance. Next, to speed up the computation,
based on the above computation method, we build a logarithmic-
convolution kernel and propose a convolution construction method
for the pixel size control map based on the visual importance map.
Finally, to perform inverse mapping after rendering, we propose a
construction method for the inverse pixel size control map.
Visual Acuity based Pixel Size Computation. The real world
projected in the retinas of eyes is reconfigured onto the cortex by
a topological transformation process before it is examined by the
brain [43], and this topological transformation can be approximated
by a Log-Polar mapping, which transforms a circular region in the
Cartesian coordinate system into a rectangular region in the polar
coordinate system. The area of the mapped pixels can be calculated
by the integral of a(e) over the original pixel, where a(e) denotes
the visual acuity calculated based on the eccentricity e.

As shown in Fig.3, (a) illustrates a g-buffer with resolution 7×7,
the red dot in the upper left corner with coordinates (0,0) denotes
the gaze point, the yellow block denotes the visual feature. (b)
illustrates the cvim computed based on Eq. 2. The lighter the
pixel’s color, the greater the visual importance. It can be seen that
visual importance is higher close to the gaze point and the location
of the visual feature. (c) illustrates the g-buffer representing each
pixel in a distinct color for clear viewing. (d) illustrates the area of
each mapped pixel calculated according to the Log-Polar mapping.
The black region in (d) indicates no pixels are mapped to it. We
stretch the circular region in (d) into a square region in (e) to utilize
the buffer completely. Since the mapping function between (c)
and (e) needs to be subjective and injective, this mapping needs
to follow two constraints. Constrain 1: for a square region, the
mapped region of it remains square (subjective). Constrain 2: the
adjacency between pixels within the region and on the boundary
remains unchanged (injective).

For constrain 1, the square in Fig.3 (c) framed in red with size si
is mapped to the square region in (e) with size s

′
i using the Eq. 3.

s
′
i = sqrt(

si∫
0

si∫
0

1
a(e)

dxdy)≈
√

π

2m
ln(1+

m
w0

si) (3)

For constraint 2, the adjacency of all pixels is guaranteed as
long as the pixels on the edges of the square are adjacent. We

a

e

c

d f

b

1s

2s

is

'

1s

'

2s

'

is

Fig. 3: (a) illustrates a g-buffer with resolution 7×7, the red dot in
the upper left corner denotes the gaze point, and the yellow mark
denotes the visual feature. (b) illustrates the cvim computed based
on Eq. 2. (c) illustrates the g-buffer representing each pixel in a
distinct color for clear viewing. (d) illustrates the size of each mapped
pixel calculated based on Log-Polar mapping. We stretch the circular
region in (d) into a square region in (e) to maximize computational
resources. (f) illustrates how the size of neighboring pixels changes
when the pixel size of the yellow pixel changes accordingly.

ensure pixel adjacency by computing the lengths of the 4 edges of
the mapped pixels, so that the pixels may not be rectangles, but
rather resemble parallelograms or trapezoids. Take the yellow pixel
in Fig.3 (c) for example, we only need to calculate the mapped
coordinates of the lower right corner(pink point) of this pixel. The
upper left corner is determined by its upper left pixel, the upper
right corner is determined by its upper pixel, and the lower left
corner is determined by its left pixel. For the pink point with
coordinates (x,y = si), the vertical coordinate v of the mapped pink
point equals the size s

′
i of the mapped square region. The horizontal

coordinate u is determined by the ratio of the sum of the visual
acuity of the pixels at the left of the pink point to the sum of the
acuity of all the pixels located on the edges of the square region
(Eq. 4).

u = s
′
i ×

√
x2+s2

i∫
si

1/a(e)dx

√
2si∫

si

1/a(e)dx

≈ s
′
i ×

ln(1+mx/(w0 +msi))

ln(1+msi/(w0 +msi))
(4)

Equations for pixels on the right edge of the square can be derived
similarly. For simplicity, we only list the mathematical derivation
of the pixels located to the lower right of the gaze point, and set
the gaze point as (0,0). When the coordinates of the gaze point is
not 0, equations for the remaining pixels can be derived similarly.

For any pixels (x,y) located to the lower right of the gaze point
on the g-buffer, the coordinates (u,v) of mapped pixels on the
mapped g-buffer are computed with Eq. 5. u(x,y) = ln(1+mx/(w0+my))

ln(1+my/(w0+my))

√
π

2m ln(1+my/w0)

v(x,y) =
√

π

2m ln(1+my/w0)
(5)

Based on our mapping function (Eq. 5), the horizontal and vertical
sizes of mapped pixels can be calculated as Eq. 6.{

∆u(x,y) = u(x+1,y)−u(x,y)≈ ∂u
∂x ·∆x

∆v(x,y) = v(x,y+1)− v(x,y)≈ ∂v
∂y ·∆y

(6)

The partial derivatives are calculated by Eq. 5. Inversely, for
mapped pixels (u,v), the coordinates (x,y) of the corresponding
original pixels on the g-buffer are computed with Eq. 7.{

x(u,v) = w0
m exp

(2m
π

v2)((2−1/exp
(2m

π
v2))u/v −1

)
y(u,v) = w0

m
(
exp

(2m
π

v2)−1
) (7)

Visual Importance based Pixel Size Computation. As discussed
in section 3.2, the ideal visual importance is related to visual acuity,
gaze motion, and visual features. In this section, we use the area of
the mapped pixel calculated with Eq. 6 and the visual importance
to adjust the size of the mapped pixel to take into account the
effects of the visual features of the scene and gaze motion. For
the mapped pixels, we approximate their shape as a parallelogram

(where x ̸= y) or two adjacent triangles (where x = y). Given the
visual importance vi, the optimized horizontal and vertical sizes
∆(u/v)vi of mapped pixels are calculated with Eq. 8.

∆(u/v)vi =

√
∆(u/v)
∆(v/u)

· vi (8)

Convolution Construction Method for Pixel Size Control Map.
The size of the mapped pixel is not only related to its visual im-
portance but also to that of its neighboring pixels because the
adjacency of the mapped pixels needs to be ensured. If we change
the size of just one pixel, it would result in overlapping pixels or
gaps between pixels. Thus, we vary the size of the pixel and its
neighboring pixels. The most straightforward computational strat-
egy is to traverse all pixels and compute the horizontal and vertical
change in pixel size c∆u/∆v for itself and its neighboring pixels.
Because the ‘spotlight of attention’ is typically assumed to decay
monotonically around its center [38], we use a logarithmic func-
tion to control the changes in the size of neighboring pixels, rather
than uniformly scaling the size of neighboring pixels. Therefore
c∆u/∆v is proportional to ln(1+ dis), where dis is the horizontal
and vertical distance between the adjacent pixel and the center
pixel. Fig.3 (f) shows a pixel of higher visual importance with a
yellow block. c∆u/∆v of its neighbor pixel (n×n, n = 2l+1, inside
the black dotted frame) are calculated based on Eq. 9.

c∆u/∆v(i, j) = ln(1+|i/ j−l|)
i/ j ̸=l
∑

i/ j∈[0,2l]
ln(1+|i/ j−l|)

(∆(u/v)−∆(u/v)vi) (9)

To speed up the computation, we propose a convolution con-
struction method to avoid repeated computation of individual pixel
size change. First, we construct the kernel with Eq. 10.

K(i, j,u/v) =

1 i f i/ j = l

− ln(1+|i/ j−l|)
i/ j ̸=l
∑

i/ j∈[0,2l]
ln(1+|i/ j−l|)

else (10)

Then, the convolution is operated and pscm is constructed with Eq.
11.

pscm(x,y,u/v) =Conv(K,∆(u/v)vi −∆(u/v))+∆(u/v) (11)

Inverse Pixel Size Control Map Construction. Similar to pscm,
we define the inverse pixel size control map pscminv to control
the corresponding pixel size in the mapped g-buffer after inverse
mapping. The inverse pixel size control map pscminv(h,w) is a
2D map with the same size as the mapped g-buffer. Each element
of the pscminv has two components representing the vertical and
horizontal sizes. For pixels of mapped g-buffer, we compute their
size ∆(x/y) in the same way as Eq.6. We approximate the relation-
ship between partial derivatives as ∂u

∂x ·
∂x
∂u ≈ ∂v

∂y ·
∂y
∂v ≈ 1. Then, the

pscminv(h,w) can be calculated based on Eq. 12.

pscminv(u,v,x/y) =
∆(u/v)

pscm(x,y,u/v)
∆(x/y) (12)

3.4 Pixel Size Control Map guided Foveated Rendering
We propose a pixel size control map guided foveated rendering
method. This method takes the g-buffer and the pixel size control
map pscm, pscminv as input and outputs the final full-resolution
output fbuffer. First, we map the g-buffer to a mapped g-buffer with
the guidance of pscm. Second, we render the reduced resolution
buffer rbuffer with a pixel shader according to the mapped g-buffer.
Third, we do the inverse mapping to transform the rbuffer to the
fbuffer with the guidance of pscminv.
Mapping guided with pscm. The g-buffer in the deferred shading
pipeline contains the world-space coordinates of objects, normals,
depth, texture coordinates, and material-related information. In
mapping, we transform the contents of the g-buffer with size H×W
to the mapped g-buffer h×w. For each pixel (x,y) on the g-buffer,
the information of this pixel is stored in the pixel on the mapped
g-buffer with coordinates (u,v) based on Eq. 13.

u =
x−1
∑

i=0
pscm(i,y,0)/

√
π

2m ln(1+mW/w0)×w

v =
y−1
∑

j=0
pscm(x, j,1)/

√
π

2m ln(1+mH/w0)×h
(13)

Rendering. In the rendering pass, a pixel shader computes the
direct and indirect lighting for each pixel using the information
from the mapped g-buffer and renders the result to rbuffer.
Inverse Mapping guided with pscminv. Finally, the rendered
result stored in rbuffer is mapped to fbuffer, which is the inverse of
the above process. Specifically, for each pixel (u,v) on rbuffer, the
color of that pixel is stored in the pixel with coordinates (x,y) on
fbuffer, where (x,y) can be calculated in the same way as Eq. 13.

3.5 Temporal Coherent Refinement
When the user’s gaze point, viewpoint, or scene changes, the visual
features within the user’s view will also change, which will result
in an abrupt change in the visual importance map corresponding
to that view. Since the pixel size control map is computed based
on the visual importance map, excessive pixel size changes may
result in visual flickering between frames of the final rendered
results. There are two ways to mitigate this problem. One is to
smooth the pixel size changes between frames by weighted averag-
ing the visual importance maps of neighboring frames. The other
approach is to detect the locations where the visual importance
jumps between frames of the visual importance map and eliminate
the excessive changes by adjusting the visual importance of these
locations. Based on the above ideas, we propose a method to main-
tain the temporal coherence of the visual importance map, which
enables smooth interframe changes of the pixel size control map
and realizes real-time smooth foveated rendering in the presence
of gaze point changes, viewpoint changes, or scene changes. We
utilize Eq. 14 to generate the temporal coherent visual importance
map cvim∗.

cvim∗(pi) =γcvimi−1(pi−1)+(1− γ)cvimi(pi)

+η |cvimi(pi)− cvimi−1(pi−1)|
(14)

where γ and η can be obtained with a pilot user study. cvimi de-
notes the visual importance map of the current frame, cvimi−1 de-
notes the visual importance map of the previous frame. pi denotes
the point on cvimi and pi−1 is the correspond point on cvimi−1 .
After this, civm∗ is normalized with Eq. 2 in Section 3.2 and the
foveated rendering is processed as in Section 3.3 and 3.4.

4 USER STUDIES

We conduct two pilot user studies to determine the parameters of
our method. The first one is used to estimate the parameters of the
visual acuity model and the compression parameter. The second
one is used to optimize the weight of the visual feature, kernel
size of the pixel size control map construction, and the weight
coefficient of temporal coherent refinement for the conservative
visual importance map. We also conduct a user study to evaluate
the visual perceptual quality of our method and the comparison
methods.

4.1 Pilot User Study 1: estimation of w0, m and t
We conducted the first pilot user study to empirically estimate the
most suitable parameter values for acuity limit w0, acuity slope m,
and compression parameter t = h/H = w/W in Section 3.2 that
result in perceptually acceptable foveated rendering. The visual
acuity model and compression parameter are scene-independent,
thus we ignore the visual feature and the temporal coherence, i.e.,
we only use Eq. 5 and Eq. 7 for mapping and inverse mapping.

4.1.1 Pilot User Study Design

Conditions. For w0, visual acuity of 6/6 (w0 = 1
′
) is frequently

used as an estimate of average foveal acuity for adults [44]. How-
ever, most observers may have a binocular acuity superior to 6/6,
and Brian et al. [1] used w0 = 1/48◦ = 1.25

′
. We set w0 ranging

from 1.0 to 1.4 with a step 0.1. Many researches have been con-
ducted to find the optimal m, and Brian et al. [1] reported optimal
m of different compression parameters ranging from 1.32 to 1.65.
We set m ranging from 1.3 to 1.7 with a step 0.1. For t, t = 1
denotes rendering with full-resolution. Meng et al. [2] reported
when t > 2.8 the users found foveated rendering results signifi-
cantly different from the full-resolution rendering results. We set t
ranging from 1.2 to 2.8 with a step size of 0.2. Based on the steps
of the 3 parameters, we get 5×5×9 = 225 conditions in total.
Participants and Setup. 15 participants (10 males and 5 females,
aged between 21-30) were recruited in this study, and all of them
have had experiences in VR HMDs. We used an HTC Cosmos

HMD with a Droolon aGlass to track the gaze point of the user.
The HMD was connected to a PC workstation with a 3.8 GHz
Intel(R) Core(TM) i7-10700KF CPU, 64 GB of memory, and an
NVIDIA GeForce GTX 3080 Ti graphics card.
Task and Procedure. There are 2 outdoor scenes(City [45] and
Bistro [46]) and 3 indoor scenes(Livingroom, Temple [47], and
Bedroom) used in the experiment. Each scene used 5 acuity limit
levels, 5 acuity slope levels, and 9 compression parameter levels
for generating foveated rendering results. We asked each partici-
pant to participate in the two-alternative-force-choice experiment
on 5 scenes with 225 conditions each, 1125 tests in total. For
each scene, we presented the participant with two frames: the
full-resolution rendering and the foveated rendering with t,w0,m,
where t,w0,m are selected from the shuffled parameter array. The
two frames were presented in a random order for 2 seconds each
and were separated by a black-screen interval of 0.75 second. Then,
we asked the participants to score the difference between the two
frames they observed by pressing one of two buttons. The score
Score(scene, t,w0,m) contains 2 confidence levels: 1 represents
perceptually identical; 0 represents perceptually different.

t

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Fig. 4: The average values and standard deviations of Score for each
t across all w0,m and scenes, where the yellow dotted line indicates
the score threshold of 0.5. The averaged score Score decreases with
t as expected.

Fig. 5: The average values of Score for each w0,m, t across all scenes,
where the black cross indicates the highest score. Yellow indicates
high score while blue indicates low score.

4.1.2 Results and Discussion

We calculate the average score Score for each t across all w0,m
and scenes to estimate the overall optimal t that is applicable to
general cases. Fig.4 gives average values and standard deviations
of Score for each t. As shown in Fig.4, the Score is inversely
related to t, which is reasonable. As t increases, the mapped g-
buffer gets smaller, thus reducing the overall computing resources
used in foveated rendering which leads to a decrease in the vi-
sual perceptual quality. To achieve visually acceptable results for
foveated rendering, we use a threshold of 50% responses (yellow
dotted line) considering foveated rendering to be visually indistin-
guishable from full-resolution rendering. To achieve the highest
rendering acceleration, we look for the highest t that meets this

threshold. We therefore choose t = 2 as our desired compression
ratio for foveated rendering.

We also calculate the average values of Score of all conditions
and show the smoothed score Score of each t across the w0 and m
grid in Fig.5.

As shown in Fig.5, in general, the Score increases with w0
ranging 1.0 − 1.2. This is reasonable because w0 denotes the
computing resources allocated to the fovea. Since the resolution
of the mapped g-buffer is reduced, the visual perceptual quality of
the foveated rendering results is naturally lower than that of the
full-resolution rendering. However, human perception is mainly
allocated in the fovea region, so allocating more computational
resources in the fovea region (bigger w0) will improve the quality
of visual perception of foveated rendering results. However, this
does not mean that a larger w0 is better, because too large w0
will make the visual perceptual quality of the periphery region
have a decrease. Besides, with the increase of m, Score decreases
with m ranging 1.3−1.5. This is reasonable because m represents
the rate at which visual acuity declines. A larger m means that
fewer computational resources are allocated to the periphery region,
which reduces the quality of visual perception in the periphery
region. Overall, w0 and m together determine the allocation of
computational resources in the fovea and the periphery regions,
and the optimal w0 and m are different under different t. With
t = 2, the optimal acuity limit and acuity slope are set as w0 = 1.2
and m = 1.5.

4.2 Pilot User Study 2: optimization of k, n, γ and η

We conduct the second pilot user study to take the visual feature
into account with the scene-aware foveated rendering method and
the temporal coherent refinement method. We optimize the weight
k of the visual feature, kernel size n of the pixel size control map
construction in Section 3.3 and the weight coefficient γ and η in
Section 3.5, so that the foveated rendering results have the highest
visual perceptual quality.

4.2.1 Pilot User Study Design

Conditions. Based on Pilot User Study 1, we set t = 2,w0 =
1.2,m = 1.5 as the parameters for the foveated rendering. Then,
we set the k ranging from 0.0 to 0.8 with a step size of 0.2, n rang-
ing from 1 to 9 with a step size of 2, γ ranging from 0.0 to 0.4 with
a step size of 0.1 and η ranging from 0.0 to 0.4 with a step size of
0.1. When n = 1, the visual feature can not affect the calculation
of pscm, so the rendering results are the same for different k,γ,η ,
and there is one condition when n = 1. Based on the steps of the 4
parameters, we get 5×4×5×5+1 = 501 conditions in total. The
participants and setup are the same as those in Pilot User Study 1.
Task and Procedure. The scenes used in this experiment are the
same as those used in Pilot User Study 1. Before the experiment,
participants were introduced to the scenes and how to explore them.
For each participant, we randomly selected one scene and asked the
participant to participate in the experiment with 501 conditions and
501 tests in total. The probability of each scene being selected was
the same. In each test, participants were free to explore the scene
for 10 seconds, exploring as many places as possible. At the end
of each test, participants were required to rate the visual perceptual
quality of the test and take a 5-second break. The visual perceptual
quality score Sco consists of 5 confidence levels: 5 means that no
artifacts were perceived at all, 4 means they perceived acceptable
artifacts for a few very short moments, 3 means they perceived
acceptable artifacts, 2 means they perceived noticeable artifacts, 1
means they perceived obvious artifacts.
Statistical analysis. We compared the values of different con-
ditions. First, the normality of the data was assessed using the
Shapiro-Wilk test. Then the comparison was performed with a
repeated-measures ANOVA if the values showed a normal dis-
tribution. When values did not follow a normal distribution, the
comparison was performed using a Wilcoxon signed-rank test. In
addition to the p-value of the statistical test, we also estimate the
size of the effect using Cohen’s d. The d values are translated
to qualitative effect size estimates of Huge (d > 2.0), Very Large
(2.0 > d > 1.2), Large (1.2 > d > 0.8), Medium (0.8 > d > 0.5),
Small (0.5 > d > 0.2), and Very Small (0.2 > d > 0.01).

4.2.2 Results and Discussion

We calculate the average values of Sco of all conditions. Fig.6
visualizes average values of Sco for all conditions except when
n = 1. The color and size of each point in Fig.6 represent the value
of Sco. Big size and yellow indicate high Sco while small size and

blue indicate low Sco. We also calculate the average value, stan-
dard deviations of Sco when changing only one parameter while
setting the others to their optimal values, calculate the statistical
significance between different sets of parameters, and visualize
them in Fig. 7.

When n = 1, the value of Sco is 3.62±0.11. In other conditions
in Pilot User Study 2, the value of Sco is greater than 3.62 (as
shown in Fig. 6), which demonstrates that k,n,γ,η are useful,
i.e., allocating more computing resources to pixels with the visual
feature can improve the visual perceptual quality of the foveated
rendering results. As shown in Fig. 6, the value of Sco is maxi-
mized to 4.4, when k = 0.4, n = 5, γ = 0.3 and η = 0.2. Thus, we
choose this set of parameters as the optimal estimation.

4.4

4.2

4.0

3.8

3.6

0.0

7n

0.4

0.3

0.1
0.0

0.0
0.2

0.4
0.6

0.8

0.4
0.3

0.2
0.1

0.0k

0.2

9n

0.4

0.3

0.1
0.0

0.2
0.4

0.6
0.8

0.4
0.3

0.2
0.1

0.0k

0.2

3n
k

0.4

0.3

0.1
0.0

0.0
0.2

0.4
0.6

0.4
0.3

0.2
0.1

0.0

0.2

5n

0.4

0.3

0.1
0.0

0.0
0.2

0.4
0.6

0.8

0.4
0.3

0.1
0.0

k

0.2

0.2

0.4
0.3
0.2

k

Fig. 6: The average values Sco for each k,n,γ,η across all scenes
except when n = 1. The color and size of each point represent the
value of Sco. The size of each point is Sco in the corresponding
condition minus Sco when n = 1. Big size indicates high Sco. Yellow
indicates high Sco while blue indicates low Sco.

**

3.5
3.7
3.9
4.1
4.3
4.5

0 0.1 0.2 0.3 0.4

Sc
o

k

Sco-k

**

**

3.5
3.7
3.9
4.1
4.3
4.5

3 5 7 9

Sc
o

n

Sco-n

**

3.5
3.7
3.9
4.1
4.3
4.5

0 0.1 0.2 0.3 0.4

Sc
o

η

Sco-η

*** ***

**

3.5
3.7
3.9
4.1
4.3
4.5

0 0.1 0.2 0.3 0.4

Sc
o

γ

Sco-γ

Fig. 7: The average value, standard deviations of Sco when changing
only one parameter while setting the others to their optimal values.
Error bars indicate standard deviation. Asterisks denote statistical
significance between different sets of parameters.

As shown in Fig. 7, the average value of Sco when k = 0.0
is 3.98 which is bigger than 3.62. Because we approximate the
shape of mapped pixels as a parallelogram and approximate the
area of the mapped pixel. The calculated area is an approxima-
tion of the ideal visual acuity, and therefore fine-tuning the pixel
size according to the visual acuity improves the visual percep-
tual quality. The average values of Sco when k = 0.2,0.4,0.6,0.8
are 4.02,4.27,4.11,3.92, which are bigger than 3.98. Compared
with conditions when k = 0.4, p− values of k = 0.0,0.2,0.6,0.8
are 0.002,< 0.001,< 0.001,< 0.001, and effect sizes are from
large to huge. There exists a significant difference across the
multiple k, and the Sco is maximized when k = 0.4. The av-
erage values of Sco when n = 3,5,7,9 are 4.07,4.17,4.09,3.96,
which are bigger than 3.62. Compared with conditions when
n = 5, p − values of n = 3,7,9 are 0.005,0.002,< 0.001, and
effect sizes are from large to very large. There exists a sig-
nificant difference across the multiple n, and the Sco is maxi-
mized when n = 5. The average value of Sco when γ = 0.0 is
3.94. The average values of Sco when γ = 0.1,0.2,0.3,0.4 are
4.02,4.14,4.22,4.17, which are bigger than 3.94. Compared with

conditions when γ = 0.3, p− values of γ = 0.0,0.1,0.2,0.4 are
< 0.001,< 0.001,< 0.001,0.002, and effect sizes are from large
to huge. There exists a significant difference across the multiple
γ , and the Sco is maximized when γ = 0.3. The average value
of Sco when η = 0.0 is 3.81. The average values of Sco when
η = 0.1,0.2,0.3,0.4 are 4.07,4.15,4.01,3.96, which are bigger
than 3.81. Compared with conditions when η = 0.2, p− values
of η = 0.0,0.1,0.3,0.4 are < 0.001,0.001,< 0.001,< 0.001, and
effect sizes are from large to huge. There exists a significant dif-
ference across the multiple η , and the Sco is maximized when
η = 0.2.

4.3 User Study
4.3.1 User Study Design
Hypotheses. With the same compression parameter t, our method
has better visual perceptual quality than the comparison methods.
Conditions. We have 5 conditions, which are our method(Ours),
Hyp method [1](Hyp), Log-Polar method [2](Log-Polar), Rectan-
gular method [3](Rectangular), and Rectlinear method [4](Rect-
linear). The parameters of the comparison methods are set to the
optimal parameters reported in their papers. The participants and
setup are the same as those in Pilot User Studies.
Task and Procedure. The scenes used in this experiment are the
same as those used in Pilot User Studies. We asked each participant
to participate in the experiment with 5 conditions in 5 scenes, and
5× 5 = 25 tests in total. Before the experiment, we introduced
users to scenes and how to explore them. For each participant,
the order of tests was random. The task was to explore the scenes
freely for 30 seconds in each test, exploring as many places as
possible. At the end of each test, participants were required to
rate the visual perceptual quality of the test and take a 10-second
break. The visual perceptual quality score Sco contains 5 confi-
dence levels which are the same as those in Pilot User Study 2.
The statistical analysis is the same as that in Pilot User Study 2.

Table 1: Score comparison between our method and the previous
methods.

Scene Method Avg± std p d effect size

Livingroom

Ours 4.60 ± 0.15 - - -
Hyp 4.25 ± 0.24 <0.001 1.23 very large

Log-Polar 3.55 ± 0.22 <0.001 3.91 huge
Rectangular 4.25 ± 0.21 <0.001 1.35 very large
Rectlinear 3.86 ± 0.27 <0.001 2.41 huge

City

Ours 4.36 ± 0.29 - - -
Hyp 3.48 ± 0.29 <0.001 2.16 huge

Log-Polar 3.70 ± 0.32 <0.001 1.54 very large
Rectangular 3.46 ± 0.23 <0.001 2.45 huge
Rectlinear 3.98 ± 0.21 <0.001 1.07 large

Bistro

Ours 4.12 ± 0.11 - - -
Hyp 3.72 ± 0.33 0.003 1.17 large

Log-Polar 3.38 ± 0.40 <0.001 1.78 very large
Rectangular 3.51 ± 0.39 <0.001 1.52 very large
Rectlinear 3.77 ± 0.37 <0.001 1.68 very large

Temple

Ours 4.86 ± 0.16 - - -
Hyp 4.12 ± 0.32 0.003 2.08 huge

Log-Polar 3.32 ± 0.27 <0.001 4.82 huge
Rectangular 4.05 ± 0.19 <0.001 3.22 huge
Rectlinear 4.04 ± 0.33 <0.001 2.21 huge

Bedroom

Ours 4.61 ± 0.21 - - -
Hyp 4.35 ± 0.22 0.004 0.84 large

Log-Polar 3.86 ±0.26 <0.001 2.24 huge
Rectangular 4.19 ± 0.32 0.009 1.12 large
Rectlinear 3.07 ± 0.49 <0.001 2.86 huge

4.3.2 Results and Discussion
As shown in Table 1, we calculate the average score for different
scenes of all conditions, and use the p-value and Cohen’s d to
estimate the difference between two conditions. The results show
that there is a significant difference between our method and other
methods. Compared with the 4 previous methods, our method
has the highest visual perceptual quality in all five scenes. This
demonstrated that allocating more computational resources to lo-
cations with higher visual feature improves the visual perceptual
quality of the foveated rendering results. City is an empty outdoor
scene, our method can better reduce the allocated computational
resources for non-important objects and then increase the computa-
tional resources for important objects, while comparison methods
do not consider the visual features of the objects and allocate the
computational resources only according to the visual acuity. Bistro

is a complicated outdoor scene, although the region of the scene
without visual feature is small, our method can still compress this
region, so as to allocate more computational resources to regions
with high visual feature. Temple is a scene with complex lighting
changes, our method can better handle the light variation between
frames and thus achieve better visual perceptual quality. Living
room and bedroom are different indoor scenes, objects with high
visual feature in the former are evenly distributed around the fovea
region, whereas objects with high visual feature in the latter are
concentrated on the left side of the fovea region. Our method gets
the rendering results with high visual perceptual quality without
any requirements on the distribution of objects with high visual
feature in the scene.

5 COMPARISON EXPERIMENT

5.1 Implementation

The scenes and setup used in this experiment are the same as
those used in the User Studies. The rendering methods used to
generate results include the full-resolution rendering method (GT),
our method, Hyp method [1], Log-Polar method [2], Rectangular
method [3], and Rectlinear method [4]. The parameters of the
comparison methods are set to the optimal parameters reported in
their papers. GT is rendered with resolution 2000× 2000. The
compression parameter t of the foveated rendering methods is
set as 2. The parameters of our method are set as w0 = 1.2,m =
1.5,k = 0.4,n = 5,γ = 0.3,η = 0.2. The fovea region is defined
with e < 10◦, which is the same as [1], the periphery region is
defined with e > 10◦.

5.2 Quality

The quality of our results is compared with those of ground truth
and the comparison methods in Fig.8. The first column of images
shows the comparison between our method(lower-left) and the
full-resolution rendering method (upper-right). The yellow circles
on the image indicate fovea regions. The second column of images
shows the close-ups of the rendered images for comparison (red,
green, and purple rectangles).

Our results are closer to the ground truth results and generally
preserve sharper details with the same compression ratio t. Some
artifacts are shown in the rectangular regions rendered by the
comparison methods. In City scene, the insurance company brand,
bus stop sign, and fire hydrant rendered by our method are clearer,
while the corresponding areas of comparison methods are blurred.
In Bistro scene, our method renders the street lights, the menu,
and the motorcycle more clearly, while the corresponding areas
of comparison methods have visible jagged edges. In Temple
scene, our method renders statues more clearly. For these statues,
our rendering shows the shape of statues more clearly, and the
highlight details of statues are also clearly rendered, while the
other rendering results have artifacts of different sizes and shapes.
In Bedroom scene, the teddy bears and toy cars rendered by our
method are clearer. Our method renders the highlight areas on
the front windshield of the black car closest to GT, while the
results rendered by the other methods have significant artifacts.
The numbers on the roof and the body of the red car rendered by
our method are clearly visible, while the numbers in the results
rendered by the other methods are jagged.

Table 2 shows the comparison of Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity(SSIM) of our method and com-
parison methods for the images in Fig. 8.

To distinguish the error in different regions, we quantify the
image quality in 4 regions: the whole image (whole), the fovea
region (fovea), the periphery region (periphery), and the salient
region (salient). In Fig. 9, the yellowish color indicates the fovea
region and the white color indicates the salient region.

Our method achieves larger PSNR, and larger SSIM in the
whole image, fovea, periphery, and salient regions than those of
comparison methods.

Fig. 10 illustrates the visualizations of the vam, v f m, cvim and
the probability map (pm) used in [17] of the Temple Scene. We
combine vam and v f m to generate cvim with a control parameter
k. The parameter k controls the allocation of computing resources
and the rendering quality of different regions. The probability map
is constructed by a simple max function in [17] and cannot be used
directly in our methods. The u and v channels of pscm, the rbuffer
of our method (rbufferour), the rbuffer of the Log-Polar method
(rbufferLP), the rbuffer of the Rectangular method (rbufferRT) and

GT Ours Hyp Log-Polar Rectangular Rectlinear

Ours

GT

Ours

GT

GT

Ours
GT

Ours

City

Bistro

Temple

Bedroom

Fig. 8: Left: Comparison of the proposed foveated rendering (lower-left) and the full-resolution rendering (upper-right). Right: As illustrated in
the close-ups of the rendered images, compared with Hyp method [1], Log-Polar method [2], Rectangular method [3], Rectlinear method [4],
our results are closer to the results of the ground truth and generally preserves sharper details with the same compression ratio.

(a)Livingroom (b)City (c)Bistro (d)Temple (e)Bedroom

Fig. 9: Yellowish areas indicate the fovea region, and white areas
indicate the salient region. The fovea region is defined with e < 10◦

which is the same as [1]. The salient region is defined with cvim> 0.3.

the rbuffer of the Rectlinear method (rbufferRL) are also visualized
in Fig. 10.

Table 3 shows the comparison of the average interframe error
(MSE’, the average of all interframe errors) of GT, our method, and
the comparison methods in different regions for the images in Fig.8,
where ‘NonInter’ denotes setting γ = 0 and η = 0. ‘NonInter’ gets
larger interframe errors than the comparison methods in the whole

Table 2: Image Quality (PSNR, SSIM) in the whole image, fovea region, periphery region, and salient region with different methods.

Region whole fovea periphery salient

Method Ours Hyp Log-
Polar

Rect-
angular

Rect-
linear Ours Hyp Log-

Polar
Rect-

angular
Rect-
linear Ours Hyp Log-

Polar
Rect-

angular
Rect-
linear Ours Hyp Log-

Polar
Rect-

angular
Rect-
linear

Metric PSNR

Livingroom 27.84 26.08 27.44 26.14 27.58 36.13 35.94 34.49 34.61 32.44 27.59 25.72 27.12 25.80 27.58 27.87 24.12 25.42 23.98 25.84
City 25.92 24.16 25.01 24.07 25.49 32.40 31.67 30.46 30.46 30.83 25.01 23.90 24.00 24.06 24.62 23.47 21.13 22.36 21.44 22.98

Bistro 25.52 24.31 23.25 23.60 24.93 35.26 35.20 33.36 33.90 33.77 25.32 23.98 22.96 23.36 24.72 26.04 22.25 23.01 21.77 23.66
Temple 28.95 28.32 28.27 28.32 28.80 36.68 36.33 35.95 36.38 35.19 28.67 27.94 27.98 28.02 28.62 29.64 26.33 27.31 26.98 28.14

Bedroom 30.44 30.00 30.05 29.30 30.15 39.75 39.55 37.04 36.65 38.28 30.07 28.65 27.24 28.97 28.81 30.08 24.11 24.45 22.91 24.72

Metric SSIM

Livingroom 0.688 0.475 0.574 0.471 0.621 0.986 0.973 0.977 0.976 0.976 0.662 0.491 0.599 0.498 0.646 0.630 0.446 0.480 0.442 0.493
City 0.679 0.463 0.550 0.442 0.556 0.995 0.995 0.992 0.994 0.994 0.625 0.476 0.574 0.470 0.577 0.614 0.409 0.412 0.411 0.424

Bistro 0.674 0.471 0.485 0.448 0.557 0.996 0.995 0.994 0.993 0.992 0.625 0.483 0.507 0.469 0.577 0.614 0.464 0.486 0.457 0.490
Temple 0.690 0.530 0.530 0.540 0.600 0.990 0.980 0.970 0.980 0.970 0.660 0.550 0.550 0.570 0.610 0.640 0.540 0.490 0.460 0.590

Bedroom 0.702 0.578 0.648 0.669 0.674 0.992 0.992 0.991 0.990 0.992 0.696 0.587 0.558 0.580 0.662 0.659 0.512 0.511 0.480 0.543

vam vfm cvim upscm vpscm

our LP RT RL pmrbuffer rbuffer rbuffer rbuffer

Fig. 10: Visualization of the vam, v f m, cvim, pscm, rbuffers of different
mapping-based methods and the probability map (pm) used in [17]

image and the fovea region in Bistro scene. This is because, in
Bistro scene, there are large variations in brightness and darkness
in different areas. When the gaze point changes or the user’s
viewpoint changes, the visual feature also changes, which in turn
leads to a large change in the visual importance and ultimately to
image flickering. By applying the temporal coherent refinement,
our method greatly reduces the interframe error and outperforms
the comparison methods. This is because our method mitigates
the problem of rendering flicker between frames by smoothing the
pixel size changes between frames and eliminating the excessive
changes by adjusting the visual importance.

In most cases, the interframe error of our method is close to
that of GT. While in the whole image and the periphery region in
the Bistro Scene, our method gets larger errors than GT. This is
because there are too much visual feature in the periphery region of
this scene, and these visual feature is densely distributed, thus ad-
ditional computational resources allocated to each pixel with high
visual feature are small, which finally leads to bigger interframe
errors.

Table 3: Interframe Image Quality(MSE’) in the whole image, fovea
region, periphery region, and salient region with different methods.

Method GT Ours NonInter Hyp Log-Polar Rectangular Rectilinear

whole

Livingroom 26.63 29.69 46.91 58.74 92.86 65.73 68.07
City 48.47 91.62 101.79 137.62 181.94 145.51 153.99

Bistro 29.38 116.52 159.58 195.75 174.40 128.87 125.36
Temple 15.59 26.01 32.29 53.70 56.43 52.08 49.55

Bedroom 17.88 28.77 33.00 35.46 73.80 54.61 62.78

fovea

Livingroom 18.21 19.45 21.04 20.06 28.90 28.90 25.68
City 40.89 47.54 52.27 54.73 100.52 90.41 75.74

Bistro 21.77 21.80 24.39 21.92 52.89 40.02 40.07
Temple 11.10 11.76 12.03 15.88 26.76 22.28 19.67

Bedroom 19.06 22.55 24.50 24.55 31.33 28.71 25.59

peri

Livingroom 20.56 30.61 49.57 93.45 97.06 68.29 71.17
City 59.11 94.99 103.29 199.56 189.38 150.64 161.14

Bistro 31.33 125.58 132.95 193.77 186.01 137.36 133.51
Temple 19.98 31.19 32.32 46.36 59.27 54.93 52.40

Bedroom 15.18 38.23 42.84 72.84 77.64 57.06 66.14

salient

Livingroom 42.33 65.87 128.23 275.22 376.63 267.35 269.19
City 129.29 213.76 216.72 454.20 622.71 468.83 508.91

Bistro 71.49 124.83 171.95 211.45 363.85 275.85 265.06
Temple 59.77 67.76 104.71 199.55 239.68 330.40 207.46

Bedroom 30.82 78.12 82.88 237.05 317.56 219.87 237.64

5.3 Performance
For the mapping-based foveated rendering framework, the theoret-
ical speedup of rendering is proportional to 1/t2. We implement
our method on a Nvidia GTX3080ti graphics card with t = 2 using
the deferred shading pipeline. We report the rendering time of the
segments and the total time between the full-resolution rendering,
our method, and the comparison methods in Table 4. Our method
achieves similar rendering acceleration compared with the previous
methods, reduces the rendering time by 39.33%, and achieves a

speedup of 1.65 with a 2000×2000 resolution.

Table 4: Performance(ms) of the full-resolution rendering, our
method, and the comparison methods

Procedure
Timing(ms)

GT Hyp Rectangular Rectlinear Log-Polar Ours

Depth Pass 1.34 1.35 1.33 1.32 1.32 1.32
Shadow Pass 5.87 7.83 6.01 6.12 5.46 5.67
Defer Pass 5.14 4.76 5.41 5.14 5.12 5.14

Skybox 0.08 0.08 0.08 0.08 0.08 0.08
cvim Gen - - - - - 0.93
pscm Gen - - - - - 0.91

Shading/Pass 1 25.78 12.28 7.69 7.99 7.99 7.75
Pass 2 - - 0.97 0.97 0.97 1.39
Total 38.23 26.31 21.50 21.64 20.96 23.19

Speed Up - 1.45× 1.78× 1.77× 1.82× 1.65×

6 CONCLUSION

We have proposed a scene-aware foveated rendering method. First,
a conservative visual importance map is constructed by combining
a visual feature map generated based on the scene and a visual
acuity map generated based on the user’s gaze point. A convolution-
based construction method is used to construct the pixel size control
map based on the conservative visual importance map. Next, the
foveated rendering is executed with the guidance of the pixel size
control map. At last, a temporal coherent refinement strategy is
adopted to refine the temporal conservative visual importance map,
which leads to smooth foveated rendering in real-time. Compared
to existing state-of-the-art methods, our method achieves smaller
MSE, larger PSNR, and larger SSIM in the fovea, periphery, salient
regions, and the whole image with similar performance. User
study also demonstrated that our method achieves the best visual
perceptual quality.

Our method has several limitations. The first limitation is that
our method has some scene-dependent parameters, such as weight
of visual feature, kernel size, and weight coefficient, which in our
implementation is determined using Pilot User Study 2 that em-
ployed multiple scenes. A more reasonable approach would be to
compute them scene-by-scene, or even frame-by-frame. In future
work, we will consider adaptive real-time computation methods for
these parameters. The second limitation is that our method does
not take into account the motion of the object and the interaction
between the object and the users. Human visual perception of
moving objects is more complex than that of stationary objects.
Some rendering algorithms in recent years tend to allocate fewer
computational resources to moving objects. Besides, when there
are action-based tasks, such as interactive tasks, the attention dis-
tribution will be different from the ideal state and semantic-based
features needed to be take into account. In the future, we intend
to combine object motion information, user interacting informa-
tion, low-level visual features and semantic-based features, allo-
cating fewer computational resources to objects that move at high
speeds and have simple surface textures, and more computational
resources to the interacting objects. The third limitation is that
for scenes with dense visual features in the periphery region, our
method can control the allocation of computational resources in
the fovea region and the salient region by weight of visual feature,
but the quality improvement in the salient region has limited effect
compared to other mapping-based methods. In future work, we
intend to introduce deep neural networks, etc., for quality improve-
ment.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Founda-
tion of China through Projects 61932003 and 62372026, Beijing
Science and Technology Plan Project Z221100007722004, and the
National Key R&D plan 2019YFC1521102.

REFERENCES

[1] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John
Snyder. Foveated 3d graphics. ACM transactions on Graphics (tOG),
31(6):1–10, 2012. 1, 2, 5, 7, 8

[2] Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney.
Kernel foveated rendering. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 1(1):1–20, 2018. 1, 2, 3, 5, 7, 8

[3] Jiannan Ye, Anqi Xie, Susmija Jabbireddy, Yunchuan Li, Xubo Yang,
and Xiaoxu Meng. Rectangular mapping-based foveated rendering.
In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pages 756–764. IEEE, 2022. 1, 2, 3, 7, 8

[4] David Li, Ruofei Du, Adharsh Babu, Camelia D Brumar, and
Amitabh Varshney. A log-rectilinear transformation for foveated
360-degree video streaming. IEEE Transactions on Visualization and
Computer Graphics, 27(5):2638–2647, 2021. 1, 2, 3, 7, 8

[5] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris
Wyman, Nir Benty, David Luebke, and Aaron Lefohn. Towards
foveated rendering for gaze-tracked virtual reality. ACM Transactions
on Graphics (TOG), 35(6):1–12, 2016. 1, 2

[6] Masahiro Fujita and Takahiro Harada. Foveated real-time ray tracing
for virtual reality headset. Light Transport Entertainment Research,
2014. 1, 2

[7] Martin Weier, Thorsten Roth, Ernst Kruijff, André Hinkenjann, Ar-
sène Pérard-Gayot, Philipp Slusallek, and Yongmin Li. Foveated
real-time ray tracing for head-mounted displays. In Computer Graph-
ics Forum, volume 35, pages 289–298. Wiley Online Library, 2016.
1, 2

[8] Matias K Koskela, Kalle V Immonen, Timo T Viitanen, Pekka O
Jääskeläinen, Joonas I Multanen, and Jarmo H Takala. Instantaneous
foveated preview for progressive monte carlo rendering. Computa-
tional Visual Media, 4:267–276, 2018. 1, 2

[9] Youngwook Kim, Yunmin Ko, and Insung Ihm. Selective foveated
ray tracing for head-mounted displays. In 2021 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pages 413–
421. IEEE, 2021. 1, 2

[10] Nicholas T Swafford, José A Iglesias-Guitian, Charalampos Koniaris,
Bochang Moon, Darren Cosker, and Kenny Mitchell. User, metric,
and computational evaluation of foveated rendering methods. In
Proceedings of the ACM Symposium on Applied Perception, pages
7–14, 2016. 1, 2

[11] Fabio Policarpo and Manuel M Oliveira. Relief mapping of non-
height-field surface details. In Proceedings of the 2006 symposium
on Interactive 3D graphics and games, pages 55–62, 2006. 1, 2

[12] Xuehuai Shi, Lili Wang, Xiaoheng Wei, and Ling-Qi Yan. Foveated
photon mapping. IEEE Transactions on Visualization and Computer
Graphics, 27(11):4183–4193, 2021. 1

[13] NVIDIA. Lens matched shading, July 2017.
http://developer.nvidia.com/orca/amazon-lumberyard-bistro. 1

[14] Lei Yang, Dmitry Zhdan, Emmett Kilgariff, Eric B Lum, Yubo Zhang, Matthew
Johnson, and Henrik Rydgård. Visually lossless content and motion adap-
tive shading in games. Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 2(1):1–19, 2019. 1, 2

[15] NVIDIA. Multi-res shading, July 2017.
http://developer.nvidia.com/orca/amazon-lumberyard-bistro. 1

[16] Christian Vater, Benjamin Wolfe, and Ruth Rosenholtz. Peripheral vision
in real-world tasks: A systematic review. Psychonomic bulletin & review,
29(5):1531–1557, 2022. 1

[17] Michael Stengel, Steve Grogorick, Martin Eisemann, and Marcus Magnor.
Adaptive image-space sampling for gaze-contingent real-time rendering. In
Computer Graphics Forum, volume 35, pages 129–139. Wiley Online Library,
2016. 1, 2, 7, 9

[18] Taimoor Tariq, Cara Tursun, and Piotr Didyk. Noise-based enhancement for
foveated rendering. ACM Transactions on Graphics (TOG), 41(4):1–14, 2022.
1

[19] Lili Wang, Xuehuai Shi, and Yi Liu. Foveated rendering: A state-of-the-art
survey. Computational Visual Media, 9(2):195–228, 2023. 2

[20] Martin Weier, Michael Stengel, Thorsten Roth, Piotr Didyk, Elmar Eisemann,
Martin Eisemann, Steve Grogorick, André Hinkenjann, Ernst Kruijff, Marcus
Magnor, et al. Perception-driven accelerated rendering. In Computer Graphics
Forum, volume 36, pages 611–643. Wiley Online Library, 2017. 2

[21] Eric Turner, Haomiao Jiang, Damien Saint-Macary, and Behnam Bastani.
Phase-aligned foveated rendering for virtual reality headsets. In 2018 IEEE
conference on virtual reality and 3D user interfaces (VR), pages 1–2. IEEE,
2018. 2

[22] Karthik Vaidyanathan, Marco Salvi, Robert Toth, Theresa Foley, Tomas
Akenine-Möller, Jim Nilsson, Jacob Munkberg, Jon Hasselgren, Masamichi
Sugihara, Petrik Clarberg, et al. Coarse pixel shading. In Proceedings of High
Performance Graphics, pages 9–18. 2014. 2

[23] ARAUJO Helder. An introduction to the log-polar mapping. In II Workshop on
Cibernetic Vision, December, 1996, 1996. 2

[24] V Javier Traver and Alexandre Bernardino. A review of log-polar imaging for
visual perception in robotics. Robotics and Autonomous Systems, 58(4):378–
398, 2010. 2

[25] Okan Tarhan Tursun, Elena Arabadzhiyska-Koleva, Marek Wernikowski, Ra-

dosław Mantiuk, Hans-Peter Seidel, Karol Myszkowski, and Piotr Didyk.
Luminance-contrast-aware foveated rendering. ACM Transactions on Graphics
(TOG), 38(4):1–14, 2019. 2

[26] Xuehuai Shi, Lili Wang, Jian Wu, Runze Fan, and Aimin Hao. Foveated
stochastic lightcuts. IEEE Transactions on Visualization and Computer Graph-
ics, 28(11):3684–3693, 2022. 2

[27] David R Walton, Rafael Kuffner Dos Anjos, Sebastian Friston, David Swapp,
Kaan Akşit, Anthony Steed, and Tobias Ritschel. Beyond blur: Real-time
ventral metamers for foveated rendering. ACM Transactions on Graphics,
40(4):1–14, 2021. 2

[28] Brooke Krajancich, Petr Kellnhofer, and Gordon Wetzstein. Towards attention–
aware foveated rendering. ACM Transactions on Graphics (TOG), 42(4):1–10,
2023. 2

[29] Thállys Lisboa, Horácio Macêdo, Thiago Porcino, Eder Oliveira, Daniela
Trevisan, and Esteban Clua. Is foveated rendering perception affected by users’
motion? In 2023 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 1104–1112, 2023. 2

[30] Akshay Jindal, Krzysztof Wolski, Karol Myszkowski, and Rafał K Mantiuk.
Perceptual model for adaptive local shading and refresh rate. ACM Transactions
on Graphics (TOG), 40(6):1–18, 2021. 2

[31] Gyorgy Denes, Akshay Jindal, Aliaksei Mikhailiuk, and Rafał K Mantiuk. A
perceptual model of motion quality for rendering with adaptive refresh-rate and
resolution. ACM Transactions on Graphics (TOG), 39(4):133–1, 2020. 2

[32] Taimoor Tariq, Cara Tursun, and Piotr Didyk. Noise-based enhancement for
foveated rendering. ACM Trans. Graph., 41(4), jul 2022. 2

[33] Jiawei LI Piaopiao YU Jie GUO Mingqiang WEI Yanwen GUO Dayong REN,
Zhengyi WU. Point attention network for point cloud semantic segmentation.
SCIENCE CHINA Information Sciences, 65(9):192104–, 2022. 2

[34] Liang CHANG Ke LU Tongtong WU, Fuqing DUAN. Human-object interac-
tion detection via interactive visual-semantic graph learning. SCIENCE CHINA
Information Sciences, 65(6):160108–, 2022. 2

[35] Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde Duinkharjav, Praneeth
Chakravarthula, Xubo Yang, and Qi Sun. Fov-nerf: Foveated neural radiance
fields for virtual reality. IEEE Transactions on Visualization and Computer
Graphics, 28(11):3854–3864, 2022. 2

[36] David Bauer, Qi Wu, and Kwan-Liu Ma. Fovolnet: Fast volume rendering
using foveated deep neural networks. IEEE Transactions on Visualization and
Computer Graphics, 29(1):515–525, 2022. 2

[37] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
3d gaussian splatting for real-time radiance field rendering. ACM Transactions
on Graphics, 42(4), July 2023. 2

[38] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. Peripheral vision and
pattern recognition: A review. Journal of vision, 11(5):13–13, 2011. 3, 4

[39] Anna Marzecová, Antonio Schettino, Andreas Widmann, Iria SanMiguel,
Sonja A Kotz, and Erich Schröger. Attentional gain is modulated by proba-
bilistic feature expectations in a spatial cueing task: Erp evidence. Scientific
Reports, 8(1):54, 2018. 3

[40] Yixue Wang, James R. Miller, and Taosheng Liu. Suppression effects in
feature-based attention. Journal of vision, 15 5:15, 2015. 3

[41] Sam Ling, Taosheng Liu, and Marisa Carrasco. How spatial and feature-based
attention affect the gain and tuning of population responses. Vision Research,
49(10):1194–1204, 2009. Visual Attention: Psychophysics, electrophysiology
and neuroimaging. 3

[42] M. Reddy. Perceptually optimized 3d graphics. IEEE Computer Graphics and
Applications, 21(5):68–75, 2001. 3

[43] Eric L Schwartz. Anatomical and physiological correlates of visual computation
from striate to infero-temporal cortex. IEEE Transactions on Systems, Man,
and Cybernetics, (2):257–271, 1984. 3

[44] Robert J Cooling. Dictionary of visual science. The British Journal of Oph-
thalmology, 74(8):511, 1990. 5

[45] Kate Anderson Nicholas Hull and Nir Benty. Nvidia emer-
ald square, open research content archive (orca), July 2017.
http://developer.nvidia.com/orca/nvidia-emerald-square.
5

[46] Amazon Lumberyard. Amazon lumberyard bistro,
open research content archive (orca), July 2017.
http://developer.nvidia.com/orca/amazon-lumberyard-bistro. 5

[47] Epic Games. Unreal engine sun temple, open
research content archive (orca), October 2017.
http://developer.nvidia.com/orca/epic-games-sun-temple.
5

	Introduction
	Related Work
	Foveated 3D rendering
	Improve the Visual Quality in Periphery Region

	Method
	Pipeline
	Conservative Visual Importance Map Generation
	Definition
	Generation

	Pixel Size Control Map Construction
	Definition.
	Construction

	Pixel Size Control Map guided Foveated Rendering
	Temporal Coherent Refinement

	User Studies
	Pilot User Study 1: estimation of w0, m and t
	Pilot User Study Design
	Results and Discussion

	Pilot User Study 2: optimization of k, n, and
	Pilot User Study Design
	Results and Discussion

	User Study
	User Study Design
	Results and Discussion

	Comparison Experiment
	Implementation
	Quality
	Performance

	Conclusion

