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Mirror Detection via Multi-Directional Similarity
Perception and Spectral Saliency Enhancement

Zhiwen Shao, Rui Chen, Xuehuai Shi, Bing Liu, Canlin Li, Lizhuang Ma, and Dit-Yan Yeung

Abstract—Mirror detection is a challenging task, due to the
reflective properties of mirrors. Most existing approaches rely on
exploiting the relationship between the content inside the mirror
and the surrounding environment to aid in locating mirrors.
A typical solution is to utilize contextual contrasted features.
However, the discontinuity in content at the edges of mirrors may
not always be prominent. To overcome this limitation, we propose
a novel mirror detection framework called S2MD including two
main modules, multi-directional similarity perception module
(MSPM) and spectral saliency enhancement decoder module
(SSEDM). Specifically, we employ a backbone network to extract
multi-scale global information from images using a dual-path
approach. Then, we feed these high-level dual-path features
into MSPMs to generate direction-sensitive similarity-consistent
features. MSPM utilizes active rotating filters and oriented
response pooling to model the similarity relations in different
orientations. Moreover, the SSEDM is utilized to enhance the
spatial contextual contrasted features using feature spectral
residuals and fuse the dual-path features to obtain the final
predicted mirror mask. Extensive experiments demonstrate that
our method achieves state-of-the-art performance on challeng-
ing MSD, PMD, and RGBD-Mirror benchmarks. The code is
available at https://github.com/RuiChen-stack/M2SD.

Index Terms—Mirror detection, multi-directional similarity
perception, spectral residual
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Fig. 1. Illustration of similarities in different directions in example mirror
images. Due to the reflection of mirrors, there is a certain similarity between
the content in the mirror and the real objects. In the leftmost image, the
similarity is mainly observed in the vertical direction, in the middle image,
the similarity is predominantly seen along diagonal lines, and in the rightmost
image, the two similar teddy bears are roughly aligned in a horizontal
direction.

I. INTRODUCTION

Mirrors are commonly encountered in everyday life. Due
to their reflective nature, many computer vision tasks may
mistakenly predict the content within mirrors as real objects,
leading to potential performance degradation. Therefore, mir-
ror detection plays a crucial role in computer vision and image
processing, which involves segmenting the mirror regions from
a given image. An intuitive way is to explore the differences
between the content within the mirror and real objects to assist
in locating mirrors. However, the diverse appearance variations
caused by mirror reflections still pose a significant challenge
in mirror detection.

In past five years, different properties of the relationship
between the content within mirrors and the content outside of
mirrors are taken into consideration. Yang et al. [1] observed
the discontinuity of content at the edges of mirrors and
proposed using contextual contrasted features to distinguish
mirrors from the background. However, this method may fail
when the content at the mirror edges is similar. Guan et al. [2]
noticed that people typically place mirrors in specific locations,
and thus proposed a method to learn the semantic associations
between mirrors and scenes. However, this approach overly
relies on the complexity of the scene.

Recently, Huang et al. [3] discovered that the content within
mirrors exhibits a symmetric relationship with real objects,
but it is not entirely symmetrical. This relationship is referred
to as loose symmetry. They designed SATNet to perceive
such loose symmetry relationship. However, capturing this
type of symmetry is challenging, and SATNet only considers
symmetry in the horizontal direction. In response to SATNet’s
limitation, we rethink the concept of symmetry. Symmetry
refers to the equal or similar relationship in terms of shape,
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size, arrangement, and other aspects of a pattern or object
with respect to a point, line, or plane. The relationship of
symmetry is fundamentally a type of similarity relationship,
as illustrated in Fig. 1. To enhance the robustness of learning
the relationship between mirror content and real objects, we
opt to utilize multi-directional similarity perception instead of
loose symmetry relationships.

Based on the aforementioned perspective, we propose a
new mirror detection framework called S2MD. In particular,
S2MD is a dual-path network architecture. We take the original
image and its horizontally and vertically flipped counterpart as
inputs. To perceive similarity relationships in different direc-
tions, we design a new multi-directional similarity perception
module (MSPM). It utilizes active rotating filters and oriented
response pooling to generate direction-sensitive similarity-
consistent features. Moreover, in order to enhance the saliency
of contextual contrasted features, we design a spectral saliency
enhancement decoder module (SSEDM). It integrates feature
spectral residuals with spatial contextual contrasted features to
enhance their saliency, and employs dual-path feature fusion
and refinement.

The main contributions of this work are threefold:
• We propose a novel multi-directional sensitive feature

similarity to model the relationship between the inside
and outside content of mirrors, which is integrated into a
multi-directional similarity perception module.

• We propose a new spectral saliency enhancement decoder
module to enhance the saliency of spatial contextual
contrasted features.

• We conduct extensive experiments on three challenging
mirror datasets, in which both quantitative and visual
results demonstrate the effectiveness of our approach.

II. RELATED WORK

In this section, we review the previous methods that are
closely related to our proposed approach, including mirror
detection, salient object detection, and local feature matching.

A. Mirror Detection

Mirror detection is a challenging task, as mirrors often
lack specific visual features due to their reflective nature.
Current methods mostly approach this task by examining the
relationship between the reflected content in the mirror and the
surrounding objects. Yang et al. [1] proposed MirroNet, which
is the first method designed for mirror detection. It leverages
the discontinuity of content at the edges of mirrors to aid in
the detection process. Lin et al. [4] developed PMDNet, which
progressively extracts relational contextual contrasted features
to learn similar relationships. Guan et al. [2] proposed SANet,
which achieves reliable mirror localization by exploring the
semantic association between mirrors and surrounding objects.
Tan et al. [5] were inspired by visual chirality property
and embedded visual chirality cues into detection models to
help detect mirror flip. However, these methods still struggle
to accurately localize mirror regions, primarily due to the
difficulty in capturing such relational properties.

Some other methods take into account additional informa-
tion that reflects the properties of the mirror. Mei et al. [6]
introduced depth information into mirror detection. Xie et
al. [7] proposed a cross-spatial-frequency window transformer
(CSFwinformer) to extract spatial and frequency features for
mirror texture analysis. These methods have significant lim-
itations on improving model performance. Recently, Huang
et al. [3] proposed SATNet by capturing the loose symmetry
relationship between mirror reflection content and real objects.
However, it still has its shortcomings. It only considers loose
symmetric relationships in the horizontal direction and is not
sensitive to direction. In addition, it uses simple contextual
contrasted features and is not suitable for situations where
content discontinuity is not obvious.

In contrast with the above methods, regard the relationship
between mirror content and real objects as a type of similar-
ity relationship instead of loose symmetry relationships, and
improve the performance of mirror detection from the per-
spectives of multi-directional similarity perception and spectral
saliency enhancement.

B. Salient Object Detection

Salient object detection is widely used in various computer
vision tasks, with the goal of segmenting the salient object area
of an image from the background. Early methods are mostly
sparse detection methods [9]–[11]. With the tremendous suc-
cess of fully convolutional neural network (FCN) [12] in
pixel-level semantic segmentation, pixel-level dense detection
methods [13]–[17] have emerged and gradually become the
mainstream method for salient object detection. For example,
Wang et al. [18] proposed a new method called multiple
enhancement network (MENet), which adopts the boundary
sensibility, content integrity, iterative refinement, and fre-
quency decomposition mechanisms of HVS to improve the
accuracy and robustness of the model in complex scenes. Wang
et al. [19] introduced wavelet transform theory into neural
networks and proposed a fast and lightweight wavelet neural
network (ELWNet) for real-time salient object detection.

Recently, co-salient object detection has become another
research hotspot in the field of Salient Object Detection. It
aims to detect salient objects across image groups rather than
in a single image. Most existing works [20]–[24] use attention
mechanisms to explore the consistency between image groups.
Fan et al. [25] proposed CoEG-Net with a co-attention pro-
jection strategy to achieve fast common information learning.
Zheng et al. [23] proposed a novel memory-aided contrastive
consensus learning (MCCL) framework, which is capable of
effectively detecting co-salient objects in real time.

While mirror edges may possess some visual saliency,
salient object detection methods may not be directly applicable
to mirror detection due to the influence of mirror content. In
our work, we enhance the saliency of mirrors by employing
the spectral residuals.

C. Local Feature Matching

Feature matching is a crucial task in the field of computer
vision, which involves finding corresponding feature points
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Fig. 2. The architecture of our framework, in which the structures of multi-directional similarity perception module (MSPM) and spectral saliency enhancement
decoder module (SSEDM) are shown in (b) and (c), respectively. Given a mirror image, we first generate its horizontally and vertically flipped counterpart,
then feed the two images into a weight-sharing backbone [8] to extract multi-scale global information, in which the outputs by the highest two scales are
input to MSPMs to model multi-directional similarity. Further, the outputs by all scales are input to SSEDMs to learn contextual contrasted features with
saliency enhancement and feature fusion. Finally, the segmentation head following each decoder is used to predict the mirror mask, in which the output by
the last segmentation head is treated as the final prediction.

or feature descriptors in different images or visual scenes.
The goal of feature matching is to establish associations
between similar or corresponding feature points in two or more
images, enabling applications such as image alignment, object
recognition, and 3D reconstruction. Currently, the mainstream
approach is detector-based local feature matching [26]–[29].
This method utilizes feature detectors to find salient points
or regions in an image and calculates descriptors for each
point. Then, by comparing the descriptors across different
images, corresponding feature points or regions can be found,
enabling image matching and association. Detector-free local
feature matching methods [30]–[33] remove the feature de-
tector phase and directly produce dense descriptors or dense
feature matches.

In this paper, we consider the input image and its horizon-
tally and vertically flipped counterpart, and match and fuse the
dual features extracted in our framework.

III. PROPOSED METHOD

A. Overview

Fig. 2(a) shows the pipeline of our S2MD framework. S2MD
adopts a dual-path structure. The use of a dual-path structure
is beneficial for enhancing the similarity between features.
We take both the original image and the image obtained by
horizontally and vertically flip the original image as inputs.
We extract multi-scale global information through a weight-
sharing backbone, in which the structure of backbone is Swin-
S [8].

Specifically, given an input image I as well as its flipped
image If , we feed them into the backbone to obtain multi-scale
features {F0, · · · ,F3} and corresponding flipped features
{Ff

0 , · · · ,F
f
3}, respectively. We feed the features from the

highest two scales of the dual paths into the multi-directional
similarity perception modules (MSPMs) to learn direction-
sensitive features and model multi-directional similarity. Then,
the paired features at different scales are fed into the spectral
saliency enhancement decoder module (SSEDM) to learn con-
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textual contrasted features and perform saliency enhancement
and feature fusion. Finally, we obtain the prediction masks
from each decoder by using the segmentation head. Each
prediction mask is compared with the corresponding ground
truth at the same scale to calculate the sub-loss, denoted as
L0, L1, L2, and L3, respectively. The final prediction result
of our framework is generated by the last segmentation head.

B. Multi-directional Similarity Perception Module

The MSPM is designed to perceive similar relationships in
different directions while considering the enhanced features
from dual pathways. First, the feature maps F ∈ RB×C×H×W

and Ff ∈ RB×C×H×W are concatenated together to obtain
the feature Fc ∈ RB×2C×H×W . Then, active rotating filters
(ARFs) [34] are utilized to extract direction-sensitive features.

ARF generates N directional channels of feature maps by
actively rotating the canonical filter N − 1 times. Specifically,
denote the canonical filter of ARF as F0 ∈ Rk×k×N , where
k represents the width of the convolutional kernel, and N
represents the number of rotations. ARF generates N − 1
clones of F0 by rotating it to different angles, so ARF can
be seen as a combination of N filters. Let Fi(j) and Fo(j)
denote the input feature map and the output feature map of
the j-th orientation, respectively. The computation process of
ARF is defined as

Fo(j) =

N−1∑
n=0

Fj(n) ∗ Fi(n), j = 0, · · · , N − 1, (1)

where Fj ∈ Rk×k×N represents the clone generated by
rotating F0 with j times, and Fj(n) indicates the n-th ori-
entation channel of Fj . We obtain the orientation-sensitive
feature Fo ∈ RB×N×2C×H×W . With the help of ARF, we
can obtain feature maps with orientation channels and model
the similarity between features from different directions.

Similarity learning benefits from orientation-sensitive fea-
tures, as similarity manifests in different directions. Consider-
ing similarity itself is orientation-independent, it is expected
to extract rotation-invariant feature. We feed Fo into oriented
response pooling (ORPooling) [34] to achieve rotation invari-
ance. The ORPooling achieves rotation invariance by pooling
the responses of all N response maps, so we get rotation-
invariant feature map Fp ∈ RB×2C×H×W . Then, we consider
Fp ∈ RB×2C×H×W as a feature map with two orientation
channels and perform ORPooling again to obtain the final
orientation response feature Fres ∈ RB×C×H×W . In this way,
we can align the feature of objects with different orientations.
The orientation-invariant feature summarizes salient informa-
tion across different orientations. Compared to the orientation-
sensitive feature Fo, it is more efficient with fewer parameters.

As illustrated in Fig. 2(b), to obtain multi-directional sim-
ilarity features, we model the relationship between Fres and
F, as well as Fres and Ff separately to generate similarity
maps Fsim. Specifically, we consider Fres as K and another
feature as Q. After reshaping both K and Q to be the size
of RB×HW×C , the feature similarity map of each pixel is
computed as

Fsim = QK⊤, (2)

G

Adaptive selection of 

kernel size 𝑘

𝒌 = 𝟓

𝜎

Fig. 3. The architecture of ECA module, where G represents global average
pooling, σ represents the sigmoid function, and ⊗ represents element-wise
product.

Dilated 
Conv

3×3 
Conv

Contextual Features

Local Features

Contextual Contrasted 

Features 𝐅𝑐c

Fig. 4. The structure of CCL module, in which Fcc is obtained by subtracting
local features from contextual features.

where Fsim ∈ RB×HW×HW , and ⊤ means transpose. To
obtain multi-directional similarity features, we perform matrix
multiplication between Fres and Fsim.

Due to the weak similarity between the contents in the mir-
ror and the real objects, we employ efficient channel attention
(ECA) [35] to enhance the similarity features. The architecture
of the ECA moudle is shown in Fig. 3. The enhanced multi-
directional similarity features are then obtained as the output
of the module.

C. Spectral Saliency Enhancement Decoder Module

Contextual contrasted features are widely applied in mirror
detection methods. The decoder used for extracting contextual
contrasted features is called the contextual contrasted local
(CCL) decoder, as illustrated in Fig. 4. The process of extract-
ing contrastive semantics can be described by the following
equation:

CCL(Fi) = σ(BN(fl(Fi)− fct(Fi))), (3)

where fl is the local feature extractor which contains a 3 ×
3 convolution with a dilation rate of 1, BN, and ReLU in
turn. fct is the contextual feature extractor, which consists of
dilated convolutions, BN and ReLU. By subtracting the local
features from the contextual features, we obtain the contrastive
semantics. Due to the reflective nature of mirrors, there is
often a significant contrast in color and texture between the
mirrored content and its surrounding environment. In [1], this
phenomenon is referred to as the content discontinuity at the
mirror boundaries. Contextual contrasted features are designed
to describe this relationship.
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Fig. 5. The architecture of our proposed spectral enhancement contextual
contrasted local (SECCL) decoder.

Contextual contrasted features can easily become ineffective
when the mirrored content is similar to the surrounding
environment. However, human eyes can easily perceive the
discontinuity in content. This has led us to reconsider the
meaning of contextual contrasted features. Learning contex-
tual contrast is essentially capturing the differences between
features at specific locations and those in the neighborhood,
which often is an important visual cue that denotes saliency.
Salience is highly significant for humans.

Taking the above perspectives into consideration, we pro-
pose a novel spectral enhancement contextual contrasted local
(SECCL) decoder. Fig. 5 illustrates the architecture of our
SECCL. It extracts saliency information from the spectral
residual of features and fuse it with the contextual contrasted
features to enhance the salience.

For the ensemble of natural images, the amplitude A(f) of
the averaged Fourier spectrum obeys a distribution:

E {A(f)} ∝ 1/f. (4)

It is discovered that the log spectra of different images exhibit
similar trends, though each containing statistical irregulari-
ties [36]. These similar trends are considered as redundant
information, while the statistical singularities are regarded as
saliency information in the images.

In particular, as shown in Fig. 5, we firstly perform a fast
Fourier transform (FFT) on the input feature Fin to obtain the
amplitude spectrum A(f). The log spectra can be obtained
using the formula:

L(f) = log(A(f)). (5)

Then, we can obtain the average spectrum:

AL(f) = hq(f) · L(f), (6)

where hq(f) is a mean filter with a kernel size of q. The
spectral residual is defined as

R(f) = L(f)−AL(f). (7)

Next, we convert the frequency domain features into spa-
tial domain features by using inverse fast Fourier transform
(iFFT):

S(x) =
∥∥F−1(exp(R(f) + iP (f)))

∥∥ , (8)

where S(x) represents the saliency map, F−1 represents
the iFFT and P (f) represents the phase spectrum. Finally,
we perform a simple fusion of the saliency map with the
contextual contrasted features to obtain the final output.

TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS INCLUDING RGB

SALIENT OBJECT DETECTION BASED METHODS AND MIRROR DETECTION
BASED METHODS ON MSD [1] AND PMD [4] DATASETS. THE BEST

RESULTS AND THE SECOND BEST RESULTS ARE SHOWN IN RED AND BLUE,
RESPECTIVELY.

Method MSD [1] PMD [4]

IoU ↑ Fβ ↑ MAE ↓ IoU ↑ Fβ ↑ MAE ↓

CPDNet [38] 57.58 0.743 0.115 60.04 0.733 0.041
MINet [39] 66.39 0.823 0.087 60.83 0.798 0.037
LDF [40] 72.88 0.843 0.068 63.31 0.796 0.037
VST [41] 79.09 0.867 0.052 59.06 0.769 0.035

MirrorNet [1] 78.88 0.856 0.066 58.51 0.741 0.043
PMDNet [4] 81.54 0.892 0.047 66.05 0.792 0.032
SANet [2] 79.85 0.879 0.054 66.84 0.837 0.032
VCNet [5] 80.08 0.898 0.044 64.02 0.815 0.028
SATNet [3] 85.41 0.922 0.033 69.38 0.847 0.025

CSF [7] 82.08 0.896 0.045 70.05 0.838 0.024
S2MD 87.11 0.936 0.032 69.77 0.846 0.024

As shown in Fig. 2(c), our SSEDM is an extension of
the SECCL. First, we use the concatenation followed by
convolution operation to fuse features F and Ff , obtaining
feature Fc. Denote by Fout

i+1 the (i + 1)-th scale output by
SSEDM. We upsample Fout

i+1 as a reference feature Fref ,
and add it to F, Ff , and Fc at the i-th scale of SSEDM,
respectively. Then, we feed the obtained features into SECCL
to learn more salient contextual contrastive semantics.

Finally, we concatenate those three SECCL outputs together
to get the output features Fout

i and the corresponding predic-
tion mask Pi, which is given as

Pi = fseg(F
out
i ), (9)

where fseg is a segmentation head whose output has two
channels. The output of the last decoder layer P0 is adopted
as the final prediction result of our network.

As illustrated in Fig. 2(a), our framework contains four
scales of SSEDMs and segmentation heads. The full loss
function is calculated by considering the difference between
Pi and the ground-truth mask M at four scales:

L =

3∑
i=0

wiLi(Pi,M), (10)

where wi is the weight of the i-th scale, and the sub-loss Li

at each scale is a cross-entropy loss [37].

IV. EXPERIMENTS

A. Datasets and Settings

1) Datasets: We conduct experiments on three benchmark
datasets: mirror detection dataset (MSD) [1], progressive mir-
ror dataset (PMD) [4], and RGBD-Mirror [6].

• MSD is the first mirror dataset, which consists of 3,677
indoor scene images and 341 outdoor scene images. The
dataset is divided into 3,063 images for training and 955
images for testing.
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Image SANet [2] VCNet [5] SATNet [3] CSF [7] S2MD GT
Fig. 6. Visual comparison results on example images from MSD [1] dataset, in which GT denotes ground-truth masks. The first two rows depict scenes
where the mirror is similar to the surrounding environment. The last two rows are scenes containing small and inconspicuous mirrors.

• PMD is proposed to address the small scale and lim-
ited diversity of the MSD dataset. It comprises more
diverse scenes by selecting mirror images from six public
datasets including ADE20K [42], [43], NYUv2 [44],
MINC [45], Pascal-Context [46], SUNRGBD [47], and
COCO-stuff [48], in which 5,096 images are used for
training and 571 images are used for testing.

• RGBD-Mirror is a RGBD-based mirror detection
dataset, collected from four existing datasets, including
Matterport3D [49], SUNRGBD [47], ScanNet [50], and
2D3DS [51]. It contains 3,049 RGB images and corre-
sponding depth maps. There are 2,000 images for training
and 1,049 images for testing.

2) Evaluation Metrics: Similar to previous works [3], [5],
we adopt three commonly used dense prediction evaluation
metrics: intersection over union (IoU), F-measure Fβ , and
mean absolute error (MAE) to evaluate the performance of
methods.

3) Implementation Details: We implement our network via
PyTorch [52], and use the small version of Swin Transformer
(namely Swin-S) pretrained on ImageNet-1k [53] as the back-
bone of our network. The number of rotations N in ARF is
set to 8, and the weights w0, w1, w2, and w3 in Eq. (10) are
set to 1.25, 1.25, 1.0, and 1.5, respectively.

Following data augmentation techniques used by previous
methods [3], [5], we adopt random resize and crop as well as
random horizontal flip to augment training images. For testing,
we simply resize input images to 512 × 512 to evaluate our
network. Our network can be trained on a single NVIDIA
GeForce RTX 3090/3090Ti GPU, with a batch size set to 4.
During training, we use AdamW [54] optimizer and set β1,
β2, and the weight decay to 0.9, 0.999, and 0.01, respectively.
The learning rate is initialized to 3 × 10−5 and decayed by
the poly strategy with the power of 1.0.

B. Comparison with State-of-the-Art Methods

In this section, we compare our approach against state-
of-the-art mirror detection methods under the same eval-

uation setting. These methods include RGB salient object
detection based methods CPDNet [38], MINet [39], and
LDF [40], mirror detection based methods MirrorNet [1],
PMDNet [4], PDNet [6], SANet [2], VCNet [5], SATNet [3],
and CSF [7], and RGBD salient object detection based meth-
ods JL-DCF [55], DANet [56], BBSNet [57], VST [41],
XMSNet [58], and PopNet [59]. Note that PDNet [6] also
implements a version based on depth information. Our S2MD
only uses benchmark training images, and do not rely on depth
information.

1) Evaluation on MSD and PMD: As shown in Table I, we
compare with typical state-of-the-art methods on MSD dataset
and PMD dataset, including four RGB salient object detection
based methods and six mirror detection based methods. On
the MSD dataset, our S2MD outperforms other methods in
all evaluation metrics. on the PMD dataset, S2MD achieves
competitive performance, with MAE result outperforming
other methods. It can be seen that in both datasets, our MAE
results reach the highest, indicating that S2MD can accurately
distinguish real-world objects and their mirror areas, while
some methods are accustomed to detecting similar real areas
as mirror areas. Compared to the recent powerful method
SATNet using only horizontal direction perception, our S2MD
obtains better performance especially for the MSD dataset.
This is because S2MD considers similarity relationships from
different directions as much as possible, and most MSD
images have significant similarity relationships.

Fig. 6 and Fig. 7 show the visualization results of our
S2MD and several advanced mirror detection methods on
the MSD and PMD datasets, respectively. Note that other
methods without code or predicted mirror masks released are
not compared. In Fig. 6, the first two rows depict scenes
where the mirror is similar to the surrounding environment.
In this case, S2MD obtains almost completely correct results,
while other methods incorrectly predict similar surrounding
areas as mirrors, indicating that S2MD still performs well in
challenging scenes without obvious contextual discontinuities.
Besides, from the last two rows in Fig. 6 and all the example
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Image SANet [2] VCNet [5] SATNet [3] CSF [7] S2MD GT
Fig. 7. Visual comparison results on example images from PMD [4] dataset. These input images contain cluttered content, which pose much interference on
the detection of mirrors.

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS INCLUDING RGBD

SALIENT OBJECT DETECTION BASED METHODS AND MIRROR DETECTION
BASED METHODS ON RGBD-MIRROR [6] DATASET. “W/ DEPTH”

DENOTES THE USE OF DEPTH INFORMATION.

Method w/ Depth RGBD-Mirror [6]

IoU ↑ Fβ ↑ MAE ↓

DANet [56] ✓ 67.81 0.835 0.060
JL-DCF [55] ✓ 69.65 0.844 0.056
BBSNet [57] ✓ 74.33 0.868 0.046

VST [41] ✓ 70.20 0.851 0.052
XMSNet [58] ✓ 75.37 0.848 0.043
PopNet [59] ✓ 78.10 0.883 0.043

PDNet [6] 73.57 - 0.053
PDNet [6] ✓ 77.77 0.878 0.041
SANet [2] 74.99 0.873 0.048
VCNet [5] 73.01 0.849 0.052
SATNet [3] 78.42 0.906 0.031

CSF [7] 78.66 0.900 0.031
S2MD 78.60 0.904 0.030

images in Fig. 7, it can be seen that S2MD has advantages in
detecting small objects in complex scenes.

2) Evaluation on RGBD-Mirror: Table II presents the re-
sults of different methods on the challenging RGBD-Mirror
benchmark, in which RGB-D salient object detection methods
and mirror detection methods are compared. It can be observed
that our S2MD achieves the best performance on the evaluation
metric MAE and achieves suboptimal performance on IoU
and Fβ without using any depth information. Compared to
the recent frequency domain based method CSF, S2MD per-
forms better using the proposed spectral saliency enhancement
decoder module.

Fig. 8 illustrates the visual results of different methods.
It is intuitive that depth maps can provide useful clues for
locating mirror areas. However, it may also lead to incorrect
segmentation results. For example, all the methods incorrectly

predict the right-side region as a mirror for the first example
image, especially for the RGBD salient object detection based
methods which classify almost the entire high-lighted depth
region as a mirror. Besides, in the second row, the region cor-
responding to the door in the image is easily misclassified as a
mirror by methods like VST and VCNet. These regions exhibit
significant depth variations and have similar properties to mir-
rors, such as strong saliency and visual content discontinuity,
making them prone to being incorrectly predicted. For the
fourth and fifth example images, it can be observed that many
methods either incorrectly predict an extra mirror or fail to
recognize an additional one. In contrast, our S2MD accurately
identifies mirrors by analyzing the interplay of reflections and
symmetry within the image. This consistent detection across
different scenarios underscores our method’s robust capability
to pinpoint and interpret reflection characteristics specific to
mirrors.

3) Discussion about Model Complexity: We compare our
approach with typical methods in terms of the number of
parameters, giga floating point operations (GFLOPs), and
inference speed in Table III. We find that VCNet has the largest
model complexity among these methods, which uses a smaller
image input with the most parameters, the highest GFLOPs,
and the smallest FPS. In contrast, our S2MD has moderate
computational cost with similar GFLOPs to SATNet, and CSF
has the fewest parameters and GFLOPs.

Although our S2MD and CSF both utilize frequency domain
features, they are significantly different in terms of methodol-
ogy. CSF mainly considers spatial frequency feature affinities,
global feature learning, and cross-modality features fusion.
In contrast, S2MD utilizes spectral residuals to enhance the
saliency of mirror edges. Based on the experimental results
in Table I, CSF achieves an IoU of 82.08, an Fβ of 0.896,
and an MAE of 0.045 on the MSD dataset. These results are
significantly lower than those obtained by our S2MD. On the
other two datasets, CSF also works worse than S2MD. These
quantitative results show that our method achieves a better
balance between the efficiency and the accuracy.
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Fig. 8. Visual comparison results on challenging example images from RGBD-Mirror [6] dataset. The first input image exhibits variations in depth, in which
early methods fail in this challenging case. The second input image includes symmetric objects inside and outside mirrors. The third input image places
mirrors difficult to be detected due to cluttered background. The fourth input image contains both glasses and mirrors.

TABLE III
THE NUMBER OF PARAMETERS (#PARAMS.), GIGA FLOATING POINT

OPERATIONS (GFLOPS), AND INFERENCE SPEED (FRAME PER SECOND,
FPS) FOR TYPICAL METHODS. THE INFERENCE SPEED IS TESTED ON AN

NVIDIA GEFORCE RTX 3090TI GPU.

Method Backbone Input Size #Params. GFLOPs FPS

VCNet ResNeXt101 384×384 333.17M 487.31 13.19
SATNet Swin-S 512×512 139.36M 153.12 26.92

CSF Swin-S 512×512 84.75M 78.59 21.91
S2MD Swin-S 512×512 214.05M 149.23 20.16

C. Ablation Study

In this section, we investigate the effectiveness of main
components in our framework. Table IV shows the results of
different variants of our S2MD on the MSD dataset.

1) Dual-Path Structure: Since we need to model the sim-
ilarity of local features in two relative directions, we use
a dual-path structure to enhance the perception of multi-
directional similar features. We take the original image and
its diagonally flipped counterpart as inputs to the model to
enhance the perception of similarity along diagonal directions.
We implement two variants of our S2MD. One is a pure Swin
Transformer decoded by UperNet [60], named as Baseline.
Another is a dual-path Swin Transformer, where features are
trained and supervised separately in two paths, named as Dual-
Path. The results in the first two rows of Table IV show that
using only the dual-path structure is insufficient for uncovering
effective information beneficial for mirror localization.

2) Multi-directional Similarity Perception Module: Low-
level semantic features capture the fundamental visual prop-
erties of an image, such as edges, textures, colors, and
shapes, without involving higher-level semantic understanding.
However, the similarity between the content in a mirror and

TABLE IV
ABLATION STUDY RESULTS ON MSD [1] DATASET. BASELINE USES THE
STRUCTURE OF SWIN-S DECODED BY UPERNET. DUAL-PATH DENOTES

THE DUAL-PATH SWIN TRANSFORMER. MSPM DENOTES OUR
MULTI-DIRECTIONAL SIMILARITY PERCEPTION MODULES AT THE THIRD
SCALE. MSPMS DENOTES MSPM AT BOTH THE SECOND SCALE AND THE

THIRD SCALE. SSEDM DENOTES OUR SPECTRAL SALIENCY
ENHANCEMENT DECODER MODULE. VF DENOTES PERFORMING AN

ADDITIONAL VERTICAL FLIP ON THE INPUT IMAGE. SECCL DENOTES
OUR SPECTRAL ENHANCEMENT CONTEXTUAL CONTRASTED LOCAL

DECODER.

Method IoU ↑ Fβ ↑ MAE ↓

Baseline 80.46 0.901 0.045
Dual-Path 79.59 0.903 0.044

Dual-Path+MSPM 84.28 0.909 0.040
Dual-Path+MSPMs 84.94 0.921 0.036
Dual-Path+SSEDM 85.26 0.923 0.034

Dual-Path+MSPM+SSEDM 86.23 0.926 0.034
S2MD w/o Vf 86.40 0.924 0.032

S2MD w/o SECCL 86.01 0.926 0.033
S2MD 87.11 0.936 0.032

real objects is ambiguous and requires higher-level semantic
understanding. To determine which scale is more effective
for applying MSPM, we conduct two experiments. In Dual-
Path+MSPM, MSPM is applied only to the third scale. Com-
pared to Dual-Path without using MSPM, improvements are
obtained in all three evaluation metrics. When applying MSPM
to the last two scales, further performance enhancement is
achieved by Dual-Path+MSPMs. It can be concluded that
applying MSPM to the last both scales yields the best results.

3) Spectral Saliency Enhancement Decoder Module: We
verify whether the decoder we designed is suitable for mirror
detection by replacing it. In the fifth row of Table IV, we
conduct an experiment based on Dual-Path, by replacing the
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Fig. 9. Failure cases. There are overlaps between mirrored content and real
objects in these images.

UperNet decoder with our SSEDM. Compared with the dual-
path network using UperNet decoder, the dual-path network
using our SSEDM has a gain of 5.6, 0.02, and 0.01 in
IoU , Fβ , and MAE, respectively. The improvement proves
that our decoder module can properly fuse features in the
two paths, and is more suitable for the mirror detection
task. The improvement in evaluation metrics demonstrates the
effectiveness of our SSEDM.

4) Combination of MSPM and SSEDM: To explore
the optimal way of combining MSPM and SSEDM,
we implement Dual-Path+MSPM+SSEDM and Dual-
Path+MSPMs+SSEDM, and find the latter obtains the best
performance. Therefore, applying MSPM to the last two
scales is still the most reasonable choice when combining
with SSEDM. In this case, Dual-Path+MSPMs+SSEDM is
our final model S2MD.

5) Vertical Flip: The effectiveness of horizontal flip has
been validated by SATNet [3]. To further validate whether
using the diagonally flipped image as input is beneficial
for perceiving similar features along diagonal directions, we
remove the vertical flip and instead input the original image
and its horizontally flipped counterpart into the network. The
margin between S2MD w/o Vf and S2MD demonstrates the
effectiveness of vertical flip.

6) Spectral Enhancement Contextual Contrasted Local De-
coder: The comparison of experimental results between
S2MD w/o SECCL and S2MD in Table IV demonstrate the
effectiveness of SECCL. This is due to our designed SECCL
structure with frequency domain saliency information.

D. Limitations

Although our method achieves significant improvements
compared to previous works on the MSD dataset, there are
a few failure cases on more challenging PMD and RGBD-
Mirror datasets, as illustrated in Fig. 9. This demonstrates
that our method may fail when the content in the mirror
partially overlaps with real objects. Since our method relies on
similarity perception, it may struggle to differentiate between
highly similar mirrored content and real objects. Besides, as
our method leverages the reflective properties of mirrors to
identify mirror regions by learning the similarity between
mirror contents and real targets, it may excessively rely on this
characteristic. For instance, the MSD dataset primarily focuses
on indoor scenes, in which mirror regions are quite prevalent,
and similarity relationships are abundant. Consequently, our
method performs better on this dataset. However, in other

complex environments, such similarity relationships may not
necessarily exist, and the sizes of mirror regions can vary
significantly. Therefore, our method fails to demonstrate sig-
nificant advancements over previous works in these scenarios.

V. CONCLUSION

In this paper, we have proposed an innovative module that is
sensitive to multiple directions of feature similarity, designed
to map the intricate interplay between a mirror’s inner and
outer elements. This allows for an adaptive response to the
varying conditions mirrors encounter across diverse settings,
leading to enhanced detection capabilities. Additionally, we
have proposed a new spectral saliency enhancement decoder
module. This decoder is engineered to amplify the distinctive-
ness of spatial contextual contrasted features, thereby sharp-
ening the focus on salient aspects within images.

We have compared our proposed framework with state-
of-the-art methods on three challenging benchmarks. Both
quantitative and visual results indicate that our framework
outperforms the previous works. Besides, we have conducted
ablation studies which demonstrate that main components in
our framework all contribute to mirror detection.

Considering the limitations of our method, in future work
we will explore the learning of more discriminative relational
features. A potential solution is to separate the features of
mirror reflection regions from background features, and then
extract the relational features using more powerful framework
so as to minimize the influence of regions with similar char-
acteristics. Besides, we will explore describing the reflective
properties of mirrors in a more explicit manner rather than
directly relying on symmetric similarities to reduce the impact
of symmetrical objects on detection results.
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