MMG: Manipulation-aware Holistic Human Motion Generation
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Figure 1: Holistic human motion generation with/without object manipulation from the same sparse tracking signals.
Given the inputs in (a) that include sparse tracking signals and the object manipulation representation, MMG reconstructs the
initial human body and hand (holistic) motion using the sparse tracking signals at the top of (b), refines the human motion
with the constraint of the object manipulation representation at the bottom of (b), and finally generates the manipulation-aware
holistic human motion with manipulation disabled (top) and enabled (bottom) in (c).

ABSTRACT

Generating realistic avatar motion via sparse tracking signals
through VR devices is essential for enhancing the immersive user
experience. Human-object manipulation behaviors not only affect
hand motion but also significantly impact body motion. However,
existing motion generation methods for human-object interactions
overlook the coordinated coupling between body and hand mo-
tions during manipulations. Due to the diversity and complexity
of holistic motion (body and hand motions simultaneously) in the
latent motion space, generating physically plausible and temporally
consistent holistic motion in real time, via the joint constraints im-
posed by sparse tracking signals and manipulation content, is a ma-
jor challenge in the human motion generation task. We propose
the manipulation-aware holistic human motion generation method
(MMG) to help resolve this issue. In MMG, first, we construct a
manipulation-aware holistic human motion generation framework
that serially compresses the latent motion space distribution of the
body and hand to generate realistic holistic human motion with ob-
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ject manipulation enabled. Second, to enhance the impact of ob-
ject manipulation on holistic motion generation, MMG designs a
novel object manipulation representation to extract effective ma-
nipulation features. Third, MMG is trained by an elaborate pro-
gressive manipulation-guided training algorithm to improve mo-
tion generation robustness and inference performance. Compared
to state-of-the-art methods, MMG achieves up to a 39% improve-
ment in the generated holistic motion quality with a 3.55x speedup
in generation performance. In manipulation-enabled scenes, MMG
generates holistic motion in real time (>24fps). Compared to the
state-of-the-art methods, its perceived quality is significantly im-
proved, and the task performance of holistic motion-required VR
manipulation is high-significantly improved. This paper’s code is
athttps://github.com/XRZ-BUAA/MMG.

Index Terms: Human Motion Generation, Manipulation Aware-
ness, Real-time Holistic Motion, Virtual Reality

1 INTRODUCTION

In VR, generating realistic human motions to simulate user actions
in real time bridges the physical and virtual worlds, which is es-
sential for achieving natural and immersive experiences. However,
mainstream VR devices, such as the Meta Quest Pro, Apple Vision
Pro, or PICO 4 Pro, typically provide only sparse tracking signals,
leaving most of the user’s body unmonitored. This sparsity makes
generating real-time, coordinated human body and hand (holistic)
motions a challenging task. Object manipulation, a core foundation
of VR interactions, enables users to grasp, move, and rotate virtual
objects like they would in the real world. When combined with
sparse tracking conditions, the constraints of manipulation make it
more difficult to synthesize realistic holistic motion in real time.



Current research on real-time human-object interaction (HOI)
motion generation predominantly focuses on either reconstructing
body motions [1, 15, 13] from sparse signals or independently es-
timating hand motions [57, 42]. This fragmented approach lacks a
coordinated mechanism for generating holistic motions in VR ob-
ject manipulation scenarios. Additionally, existing motion gener-
ation techniques that incorporate manipulation content have two
key limitations: they struggle with real-time dynamic body mo-
tion reconstruction from sparse signals, and they cannot synthe-
size integrated body-hand motions simultaneously [40, 51, 44].
Naive stacking independent body and hand motion modules cre-
ates physical implausibility by ignoring object-manipulation con-
straints, while also creating computational overhead that breaks
real-time performance requirements (>24fps). As shown in Fig.
2 (a), when users attempt to manipulate toothpaste from a distance,
compared with the ground truth (GT), the naive stacking method
(NS) generates unnatural, stiff leg movements that fail to convey
the intended spatial manipulation. The problem persists during the
object manipulation. As demonstrated in Fig. 2 (b), when a user
takes a photo with a camera, the method produces obvious body
posture errors due to its inability to accurately interpret manipula-
tion intent. These unnatural holistic postures and poor frame rates
significantly degrade the VR user experience.

The above observations formu-
late three major challenges that
need to be addressed to -effi-
ciently synthesize realistic holis-
tic motions in object-manipulation-
enabled scenes. The first challenge
is compressing the distribution of
latent holistic motion space with Z=a
manipulation constraints to enhance
the physical plausibility of the syn-
thesized holistic motion. The sec- a‘
ond challenge involves efficiently | T‘ '\,
extracting manipulation features to L&,
regulate holistic motion generation. .
The third challenge is improving the ~ Figure = 2: Comparison
performance and robustness of the between ground truth (GT)
motion generation model to enhance ~ and holistic motions gener-
the user experience in manipulation- ~ ated by the naive stacking

enabled VR environments. body and hand motion
method (NS) [15, 42]

in  manipulation-enabled
scenes, showing (a) ap-
proaching the manipulated
object and (b) during ma-
nipulation.
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We propose the manipulation-
aware holistic human motion gen-
eration method (MMG) to address
the aforementioned challenges. For
the first challenge, we construct a
manipulation-aware holistic motion
generation framework. This framework utilizes sparse tracking sig-
nals and manipulation content to serially compress the latent mo-
tion space from the human body to the hands, thereby generat-
ing complex and natural holistic motions. To tackle the second
challenge, we design a novel object manipulation representation.
This representation efficiently encodes the manipulated object and
manipulation motion features based on avatar shapes, achieving
manipulation-aware motion standardization. For the third chal-
lenge, we introduce a progressive manipulation-guided training al-
gorithm. This algorithm incrementally trains the model from ini-
tial to manipulation-constrained holistic motion and incorporates a
distillation mechanism to simplify model complexity, resulting in
robust holistic motion inference with significant performance im-
provements. Fig. 1 illustrates an example of holistic motion gener-
ation by MMG. The generated holistic motion in Fig. 1 (c) shows
that when the user manipulates the camera, not only does the hand
motion dynamically update with manipulation behaviors, but the
avatar’s body motion, such as the shoulder, also changes signifi-

cantly depending on whether camera manipulation is enabled. The
quality of holistic motion generated by MMG surpasses the state-
of-the-art method by 39%, achieving up to a 3.55x generation per-
formance improvement.
The contributions of this paper are as follows:
¢ A manipulation-aware holistic motion generation framework
to synthesize realistic holistic motion in manipulation-enabled
VR scenes;
¢ A novel object manipulation representation method to extract
effective manipulation features for enhancing holistic motion
synthesis accuracy;
¢ A progressive manipulation-guided training algorithm to im-
prove synthesis quality with reduced model complexity for
holistic motion generation;
¢ A dedicated user study that proposed for the first time to
evaluate the user experience of the generated holistic motion
through actual VR manipulation tasks.

2 RELATED WORK

This section reviews recent studies related to our work.

2.1 Full-body Motion Estimation from Sparse Signals

Recent work focuses on estimating full-body motion through sparse
inertial measurement units (SIMUs) attached to the body, avoid-
ing complex sensor systems. Marcard et al. [48] first employ an
anthropometry-constrained statistical body model with six SIMUs
to enhance outdoor motion capture accuracy. Subsequent works ap-
ply various generation models, e.g., RNN-based networks [22, 55]
and transformer-based networks [53, 26], to tackle unclear spatial
dependencies and limited real-time prediction. Diffusion models
[38, 20, 39] further advance motion reconstruction, including text-
conditioned and action-conditioned generation [45, 27, 56, 58].

With the proliferation of VR applications, SIMUs remain cum-
bersome, prompting research on generating full-body motion from
sparse tracking via VR/AR devices. Variational autoencoder-based
methods [12, 9] are introduced to improve the generation accu-
racy of full-body motion from noisy head and hand posture sig-
nals in VR devices. A reinforcement learning framework [50] is
implemented to enhance the physical plausibility of valid full-body
motions from sparse user signals. For real-time capture and lo-
calization, Yi et al. [54] mitigate translation drift from missing
global positioning and SLAM failures. Constraint-based diffusion
frames sparse-to-full-body tracking as conditional sequence gener-
ation [59, 7, 43]. Stratified designs improve lower-body accuracy
[13, 15], and context-aware conditioning enhances temporal consis-
tency [33]. Efforts also improve motion synthesis quality in diverse
3D scenes, including fixed-trajectory movements [33], body-object
interaction [29], and multi-person interactions [30]. Lightweight
generative networks [2, 3] model conditional distributions in la-
tent motion space for 3D upper-body pose accuracy . To address
the limitation of ambiguous lower-body motion generation, many
kinematics-based works are introduced to reconstruct human mo-
tions [52, 24, 15].

Recently, researchers focus on enriching the user experience of
avatar generation in VR. Ahuja et al. [1] propose the first empha-
sized, stylized full-body motion synthesis system in VR, fusing
user’s actual motions with stylized examples from limited inputs
from HMD and both-hand positions, synthesizing coordinated and
expressive full-body avatar motions in real time. Wang et al. [49]
propose a hierarchical dressed human representation method via
physically decoupled diffusion models, enabling reusable, physi-
cally layered human generation with complex clothing. For human-
object interaction, Hu et al. [21] use encoder-residual graph convo-
lutional networks and multi-layer perceptrons to predict human mo-
tions during interactions, but neglect hand motion during the pro-
cess.



2.2 Hand-Object Interaction Pose Estimation

Research on hand-object interaction pose estimation advances hu-
man motion generation by focusing on enhancing hand motion in
human-object manipulation.

Numerous datasets advance hand motion estimation. Many
RGB-D video datasets capture precise 3D hand poses during hand-
object interaction [17, 19, 5, 6, 14]. Recent datasets [41, 23, 4]
provide 3D full-body shape and pose sequences during object in-
teractions, enabling deeper research into full-body human-object
interaction.

Leveraging these datasets, various hand motion estimation meth-
ods have been proposed. Tzionas et al. [46] combine generative
and discriminative models for reasonable estimation under occlu-
sion and data loss. Zhang et al. [57] integrate voxel occupancy
with geometric details to regress finger motion from wrist and ob-
ject trajectories. Taheri et al. [42] apply a two-stage inference
pipeline to synthesize realistic and temporally consistent bimanual
motions. Cheymol et al. [8] propose a virtual-hand adaptive avoid-
ance algorithm, simulating user responses to flames in real envi-
ronments, enhancing the overall perception of avatar vulnerability
in VR. Qu et al. [36] generate semantically consistent non-human
hand motions from hand skeletal animations to enrich the user’s ex-
ploration experience in VR. Conditional diffusion improves tempo-
ral coherence and context consistency in interaction-related motion
synthesis [45, 7, 43, 33]. However, these methods neglect physical
continuity between body and hands during manipulation, reducing
overall plausibility, and overlook manipulation-aware holistic mo-
tion. Naively combining state-of-the-art body and hand generation
methods ignores manipulation context, degrading global consis-
tency and user immersion. MMG generates realistic manipulation-
aware holistic motion efficiently via the joint constraints of sparse
tracking signals and effectively extracted object manipulation rep-
resentation.

3 MANIPULATION-AWARE HOLISTIC MOTION GENERATION
3.1 Problem Statement

To generate realistic holistic motion in manipulation-enabled VR
scenes, MMG is designed to generate manipulation-aware body and
hand motion simultaneously using sparse tracking signals and ma-
nipulation content.

Inputs. The inputs of MMG include two parts: sparse track-
ing signals and object manipulation representation. Sparse track-
ing signals originate from a common HMD and its two accom-
panying controllers, which are denoted by a time-dependent vec-
tor M(t) = [mh(t),ml(t),mr(t)]. mh(t), ml(t), and mr(t) drive the
sparse movements of the user’s head, left wrist, and right wrist at
the timestamp ¢, respectively [13, 15]. Each of these functions pos-
sesses 3 degrees of freedom for 3D translation and the correspond-
ing translation velocities, as well as global rotation angles and an-
gular velocities based on the 6D representation in [24]. The sparse
tracking signals are represented as M € R34 where T}, is the
time interval for sparse tracking signal sampling.

The object manipulation representation consists of the manipu-
lation state label 7(z), the avatar model shape 3, the sparse vertex
set F, of the manipulated object, and the manipulation motion fea-
ture Fy(r). m(t) is a binary value indicating whether the avatar is
in the manipulation mode at the timestamp ¢. 3 describes the shape
of the avatar. F, contains N, vertices uniformly sampled from the
manipulated object O. Fy(t) is the set of shortest distances from N,
sampled points on the left and right hands, respectively, to the ma-
nipulated object at the timestamp 7. N, and N; are hyperparameters
that determine the trade-off between computational complexity and
representation fidelity. By combining sparse tracking signals and
manipulation content, we form the complete inputs, represented as

X(1) = [M(),n(t), B, Fo, Fa(1)]-

Serialized Diffusion-based SMPL Representation. We use the
standard skeletal rig SMPL-X to represent the human body and
hands [34]. For the joint j, the local rotation y/(¢) is defined
within the set function Y () at the timestamp ¢. The global rota-
tion G(y/ (1)) is calculated by cumulatively multiplying back to the
root joint, as shown in Equation 1 [15]:

Gi) = TT ¥ 0
i€A(j)

where A(j) is the ordered joint ancestor set of j, and G(y/(r))
denotes the final joint motion of the joint j.

In generating natural human motion during manipulations in VR,
the spatial and shape characteristics of the manipulated object, as
well as the relative position between the human and the object, im-
pose kinematic constraints on the human body and hand postures.
These constraints determine the reachable space and possible pos-
tures of the body and hands. The complexity of manipulation fea-
tures poses challenges for learning human motion representations.
Therefore, we introduce the object manipulation representation to
constrain the human body and hand motion, enhancing the physical
plausibility of the holistic motion generated by MMG.

Slight deviations in manipulation behavior lead to significant vi-

sual differences in body motion. Physically plausible body pos-
tures depend on sparse tracking signals and the spatial relationship
with the manipulated object. Additionally, in the SMPL-X model,
body joints are connected to the hands through wrist joints. There-
fore, a serialized diffusion-based approach is constructed to gener-
ate human motion from the body to the hands, and a progressive
manipulation-guided training algorithm is introduced to enhance
the robustness and performance of the MMG model.
Outputs. MMG outputs the holistic motion estimation, denoted
by the set function Y (). MMG first generates the latent code of
body Yp,qy(2) and both hands Yjq,q4(t) serially, which is defined
as: Y(t) = Yboé;(t) U Yhan:is(t). Then, MMG leverages the mo-
tion decoders to generate Y (r) with the input of Y (). body and
hands denote the number of joints in the body and both hands of
the avatar model, respectively, which are 22 and 30 in SMPL-X
[34]. Therefore, the motion outputs of MMG have a dimensional-
ity of (22430) x 6 =312, i.e., Y(¢) € RTw>312 where T, is the
number of output frames generated in a single generation process.

3.2 Manipulation-aware Holistic Motion Generation
Framework

In this section, we first illustrate the procedure of proposed MMG
framework, and then give the network structure details of MMG.

Fig. 3 illustrates the framework of the proposed MMG. MMG
has three stages: stage 1, the holistic motion latent learning stage;
stage 2, the initial holistic motion code generation stage; and stage
3, the manipulation-aware holistic motion generation stage.

Stage 1 learns precise body and hand motion latent codes from
sparse tracking signals and holistic motion data to guide subsequent
stages. While standard autoencoders have limited generative abil-
ity and discontinuous latent spaces, variational autoencoders pro-
vide stronger generative capabilities, continuous latent spaces, and
reduced overfitting risks [28]. Therefore, stage 1 employs a condi-
tional variational autoencoder (CVAE) to learn these motion latent
codes. The CVAE architecture comprises four modules: body mo-
tion encoder, hand motion encoder, body motion decoder, and hand
motion decoder.

The stage 1 process begins by combining holistic motion data
with sparse tracking signals through a cross-attention mechanism
[47]. The body and hand motion encoders then encode these fused
features to generate precise motion latent codes for guiding the
motion latent codes generation in later stages. Finally, the de-
coder modules reconstruct precise holistic motions using these la-
tent codes.
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Figure 3: Illustration of the MMG framework. It consists of
three stages. In stage 1 (marked in a black dotted box), a con-
ditional variational autoencoder (CVAE) learns the latent holistic
motion code from sparse tracking signals. The CVAE’s body and
hand motion decoders then reconstruct the holistic motion from
this latent code. In stage 2 (marked in purple dotted boxes), a se-
rialized diffusion model reconstructs the latent motion code from
noisy latent codes without manipulation content, using the sparse
tracking signals as guidance. In stage 3 (marked in yellow dotted
boxes), a serialized control network refines the stage 2 latent motion
code by incorporating object manipulation representation. The final
holistic motion is then decoded using the stage 1 motion decoders.

Stage 2 aims to generate initial body and hand motion latent
codes from real-time sparse tracking signals. We design a serialized
diffusion model consisting of a body denoising diffusion probabilis-
tic module (DDPM) and a hand DDPM. Each DDPM contains five
denoising layers and incorporates timestep embedding ¢ processed
through a multilayer perceptron (MLP). This enables the model to
dynamically adapt to different diffusion stages [20]. To ensure fea-
ture dimension alignment and information integrity, we implement
dedicated embedding modules for three input types:

1) the sparse signal embedding module, 2) the noisy body la-
tent code embedding module, and 3) the concatenated embedding
module for initial body motion and noisy hand latent codes.

The initial motion latent codes in stage 2 are generated in two
steps. First, the sparse tracking signals and noisy body latent codes
are embedded through their respective modules and concatenated
before being input into the body DDPM to generate the initial body
motion latent code. Second, this initial body motion latent code is
concatenated with the noisy hand latent code for embedding, then
combined with the embedded sparse signals as input to the hand
DDPM to produce initial hand motion latent codes.

Stage 3 refines the initial body and hand motion latent codes
from stage 2 by applying object manipulation representation con-
straints, producing manipulation-aware motion latent codes. This
stage employs a serialized control network with body and hand
control modules, adding object manipulation representation as ad-
ditional input. To maintain proper feature dimensions and infor-
mation integrity, we use two embedding modules: 1) the object
manipulation feature embedding module, and 2) the concatenated
embedding module for manipulation-aware body motion and noisy

hand latent codes.

The stage 3 workflow proceeds as follows. Firstly, we con-

catenate the embedded sparse tracking signals, noisy body latent
codes, and object manipulation representation features. This com-
bined input enters the body control module to generate the resid-
ual manipulation-aware body latent code. Adding this residual to
the initial body latent code creates the refined manipulation-aware
body motion latent code. Secondly, we combine the body motion
latent code and noisy hand latent code through concatenated em-
bedding, then merge them with the embedded sparse tracking sig-
nals and object manipulation representation features. The hand con-
trol module processes these concatenated features to generate hand
latent code residuals. Adding these residuals to the initial hand
latent codes produces the manipulation-aware hand motion latent
codes. Thirdly, stage 3 utilizes copies of the body and hand motion
decoders from stage 1, maintaining fixed parameters without addi-
tional training. These decoders use the manipulation-aware body
and hand motion latent codes to synthesize the final manipulation-
aware holistic motion in real time.
Network Structure Details. In stage 1, MMG employs a condi-
tional variational autoencoder (CVAE) with a Transformer archi-
tecture and skip connections to learn latent holistic motion from
sparse tracking signals, similar to S?Fusion [43]. The CVAE’s en-
coder and decoder each contain 9 layers, with 4 attention heads per
layer.

In stage 2, the architecture consists of several embedding mod-
ules: the sparse signal embedding module uses three sequential
layers (convolutional, linear, convolutional); the noisy body latent
code embedding module uses a single convolutional layer; and the
concatenated embedding module for initial body motion and noisy
hand latent codes combines linear and convolutional layers. For
both body and hand motion generation, the DDPMs use a 6-layer
DiT backbone [35].

In stage 3, the object manipulation feature embedding module
uses a residual network with 4 residual blocks and a Transformer ar-
chitecture. The concatenated embedding module for manipulation-
aware body motion and noisy hand latent codes combines a linear
layer and a convolutional layer. Both body and hand control mod-
ules share the same structure: a linear layer, a fixed DDPM copied
from stage 2, and another linear layer. The control modules use
linear layers to transform manipulation-aware features into a more
suitable feature space for downstream processing. Following other
diffusion-based motion generation works, our denoisers in stages 2
and 3 directly predict the final denoised result instead of predicting
noise as in conventional diffusion [37, 15].

We set the length of each input motion sequence to 20, mean-
ing both 7;,, and T, are 20. Each latent code has dimensions of
(1, 256) and represents the motion across all 20 frames. The CVAE
encoder converts motion sequence data R (o ioins*6) jnto a latent
code in R(- 256) | while the decoder reverses this process. Note that
only the decoder is used in the motion inference process. Body

joints and hand joints are trained separately, with 22 body joints
and 30 hand joints (15 for each hand).

3.3 Object Manipulation Representation

There is a lack of efficient methods to quickly extract and accurately
represent object manipulation content, which is crucial for synthe-
sizing natural and realistic holistic motion during object manipula-
tion. In this section, we extract effective manipulation features to
guide the manipulation-aware holistic motion encoding. The object
manipulation representation (z) is

I:[S(t)7B7F07Fd(I)]7 2)
which consists of the manipulation state label S(z) at the timestamp
t, the shape feature 3 of the avatar model SMPL-X, the manipulated

object feature F,,, and the manipulation motion feature F(r) at the
timestamp ¢.



Figure 4: Visualization of holistic motion with different shapes
when the avatar is manipulating the camera.

S(r) € R! is a binary parameter that indicates whether the user is
engaged in manipulation at the timestamp . MMG allows users to
actively confirm manipulating objects via a controller button. Upon
confirmation, MMG uses the three other features mentioned above
to refine human body and hand motion, ensuring that the generated
motion appears more natural and realistic during object manipula-
tion.

MMG incorporates the body shape parameter 8 € R' of SMPL-
X into the object manipulation representation. In a physically plau-
sible holistic motion, local rotations of avatars with different shapes
vary for the same manipulation behaviors and sparse tracking sig-
nals. Fig. 4 visualizes the holistic motion moment of an avatar
manipulating the camera with different body shapes. Compared to
the holistic motion with the shape shown in Fig. 4 (a), the slimmer
avatar in Fig. 4 (b) exhibits penetration of the hands and feet under
the same sparse tracking signals.

To provide MMG with the geometric shape and spatial position
of the interacted object for synthesizing precise motion during in-
teractions, we incorporate the sampled interacted object’s vertices
F, € R?No>3 into the object manipulation representation. To re-
duce the feature complexity and enhance the representation effec-
tiveness, we sample N, vertices of the interacted object based on
the left-hand and right-hand coordinate systems instead of directly
integrating all vertex information or using uniform vertex sampling.
First, we project the interactive object O onto the unit sphere sur-
face. For any vertex v on O, its projection on the unit sphere’s
surface is denoted as v':

; v—mean(V)

! argy,comax(v;i —mean(V)) ®)
where V denotes the set of all vertices on O, and mean(V') repre-
sents the average value of all vertices in V. Next, we uniformly
sample N, vertices {V}, ...,y } on the unit sphere, and transform
them into both the left-hand and right-hand coordinate systems L, R
to obtain F,:

F, :[(rf»elqu)lL)’"" (r}LV,,v OI\L/(,7¢I\LJ(,)7
(rF, 61,08, ... (X, . 68 O )]

where (riL(R)7 GI-L (R) , (PiL <R)) is the polar coordinate representation of
v§ in the left(right)-hand coordinate system.

To achieve responsive and stable holistic motion and to promote
smooth motion transitions during manipulation, Fy(r) € R2Nax1
provides continuous information about proximity using the mini-
mum distance from hands to the object’s surface at the timestamp 7.
We uniformly sample N, points on both the left and right hands at
the timestamp ¢, denoted as pl1 (1), ...,pfvd (t),P(t),-.; py, (t). For
each sampled point p(¢), we calculate the nearest distance d(t) to
the interacted object’s surface, and obtain F;(7):

Fd(t) = [di(t)v"'7d£14(t)7d{(l)7"'7d;,1(t)] ®)

3.4 Progressive Manipulation-guided Training

The proposed progressive manipulation-guided training algorithm
trains MMG in three steps: 1) latent motion training, 2) initial holis-
tic motion code training, and 3) manipulation-aware holistic motion

“4)

code training.

Latent motion training trains the CVAE in stage 1 of MMG. The
human body and hand motion codes in the latent space within the
CVAE serve as references for generating motion codes in stages
2 and 3. The body and hand motion decoders within the CVAE
rely on accurate motion codes to reconstruct holistic motion with
minimal deviation. The CVAE is trained using the loss function
shown in Equation 6:

Levae = A’lekl (N(u,p)HN(O, 1))
+ ArecL1 (R, R) (6)
+lij1 ([37P)

which includes the KL divergence, the reconstructed joint rota-
tion, and the joint position loss terms. A is the weight assigned to
the KL divergence loss; Dy; denotes the KL divergence loss term,
which aligns the latent space in the CVAE with a standard normal
distribution; u and p are the mean and standard deviation predicted
by the CVAE encoder. A, and A jp are weights of the reconstructed
joint rotation and the joint position loss terms, respectively. L is
the smooth L1 loss function [18]. R and R are the predicted and
ground truth joint rotations, respectively. P and P are joint posi-
tions calculated using forward kinematics [24] based on R and R,
respectively.
Initial holistic motion code training focuses on enabling the se-
rialized diffusion model in stage 2 to learn complex body postures
and detailed hand postures. Given the input of the noisy body mo-
tion latent code and sparse tracking signals, the loss function for
training the body DDPM is shown in Equation 7:

LZf,’Z” = L1 (Zpodys Zbody) @)
where Zbody and Zp,qy are the predicted and ground truth body mo-
tion latent codes, respectively. Next, we fix the parameters in body
DDPM and train the hand DDPM with the loss function L{/7"
shown in Equation 8:

dd P
Lharl:;; =L (Zhandsazhands) (8)
where Zha,,ds and Zj,4,45 are the predicted and ground truth hand

motion latent codes, respectively.

Manipulation-aware holistic motion training leverages the ma-
nipulation representation to train the serialized control network to
refine the holistic motion code. First, we fix the parameters of the
body and hand DDPM. Then, we train the body control module
using the loss function shown in Equation 9:

cn _ Zcn
body — Ly (Zh()dy7Zb0d)')

©
+ A’jPLl (Pbudy7 Pbody)

which includes terms for body joint rotation and position loss. Zgg dy
and Zp,qy are the predicted and ground truth manipulation-aware
body motion latent codes. Pg{')’dy and P4y are positions of the joints
calculated based on Z;” dy and Zj,qy. Similarly, the hand control
module is trained using the loss function shown in Equation 10:

LZans =L (Z;ans’zhdl1ds')
+Aijl (P]fgndsvphands) (10)

+ Zfvle (V}fgnd‘w Vhana’s)

which includes the additional hand joints rotation loss term. V,;,4¢
are positions of the sampled hand vertices in the object manipula-
tion representation, and V;f;’n 45 are the positions calculated by the
output hand motion of MMG.

Model distillation is inspired by MotionLCM [10]. It trains a
lightweight online network to fit the control-network-guided seri-
alized diffusion model constructed in stages 2 and 3. This approach
allows the model to predict clear latent representations with fewer-



Table 1: Comparison of holistic motion estimation results between state-of-the-art methods and MMG on GRAB [41]. SA. denotes the
state-of-the-art body motion generation method SAGE [15], AG. denotes AGRoL [13], and GR. denotes the state-of-the-art hand motion

generation method GRIP [42].

Methods Body MPIRE Body MPJPE  Hand MPJRE Hand MPJPE  Body MPIVE MPJPE MPVPE
AG.[13] + GR.[42] 2.82 5.68 0.60 19.84 2.99 3.02
SA.[15] + GR.[42] 3.06 3.51 0.60 11.03 2.96 2.98

MMG 2.06 2.81 0.60 9.57 1.82 1.89

step inferences. Specifically, in stages 2 and 3, for each DDPM, we
train a 24-layer DiT denoiser as the teacher model, then distill it into
a target 6-layer denoiser model. Since the teacher and target mod-
els share the same network architecture and feature dimensions, we
not only have the target denoiser learn the output of the teacher
denoiser, but also have it learn the intermediate outputs of certain
layers within the teacher denoiser network. During diffusion infer-
ence in stages 2 and 3, we first use 5 denoising steps. Then, we
employ the motionLCM method [11] to reduce the number of de-
noising steps, ultimately requiring only a single denoising step in
the inference process. Finally, the well-trained target denoisers are
implemented in stages 2 and 3 of MMG.

4 EXPERIMENTS
4.1 Experimental Setup

Coefficients Settings. The hyperparameters N,, Ny, Tin, and T,
are set to 1024, 99, 20 and 20. In this paper, the coefficients of loss
functions Ay, Arec, and A, are set to 0.00001, 1.0, and 0.25, respec-
tively. A, is set to 1.0 and 50.0 for the body control module and
the hand control module, respectively. For details of dataset prepa-
ration and optimization procedures used in MMG training, please
refer to the supplementary material.

Real-time Running Setup. We use the Unity platform to perform
real-time execution of the program. The optimized MMG is con-
verted into ONNX format and integrated into Unity. The hardware
setting of this paper for real-time execution includes a PICO 4 Pro
HMD powered by a workstation with a 3.9GHz Intel® Core™ i9-
12900K CPU, 32GB RAM, and an NVIDIA GeForce GTX 4090
graphic card. To obtain manipulation content, we use the ‘A’ button
on the controller, allowing the user to determine whether to enter or
exit the manipulation state. The object closest to the inner side of
the hand (the palm side) is regarded as the manipulated object.
Evaluation Metrics. We first evaluate the accuracy and tempo-
ral consistency of MMG in holistic motion generation. Then, we
assess the real-time performance of MMG. For motion generation
accuracy metrics, we use body and hand MPJRE (mean per joint
rotation error), and body and hand MPJPE (mean per joint position
error). For temporal consistency, we employ body MPJVE (mean
per joint velocity error). Due to the numerous joints and the small
unit velocity of many joints in the hand, the hand MPJVE tends to
be 0 in all methods and is therefore omitted in comparisons. We
also use MPJPE and MPVPE (mean per vertex position error) to
evaluate holistic motion.

4.2 Quantitative and Qualitative Results

We combine the state-of-the-art body motion generation methods
AGRoL [13] and SAGE [15], along with the hand motion genera-
tion method GRIP [42] as benchmarks for the state-of-the-art holis-
tic motion generation.

To fully evaluate the motion generation quality of MMG, quan-
titative comparisons are performed not only on the manipulation-
included holistic motion dataset GRAB [41], but also on
manipulation-excluded body motion datasets: AMASS [32],
IDEA400 [31], and TRUMANS [25].

For fair comparisons, all methods use a batch size of 16. T;,, and
Tour of MMG, AGRoL, and SAGE are both 20, while GRIP retains
its original 7}, and 7,,; of 2 [42]. We reoptimize these methods on
the respective datasets until convergence for each dataset compari-
son.

As shown in Table 1, on the manipulation-included holistic mo-
tion dataset GRAB, MMG demonstrates superior accuracy in both
holistic and body motion generation compared to state-of-the-art
methods while maintaining comparable accuracy in hand motion.

In terms of holistic motion generation quality, compared to both
AGROL+GR. and SA.+GR., MMG achieves a 39% improvement in
MPIJPE and a 37% improvement in MPVPE. In terms of body mo-
tion generation quality, compared to AGRoL+GR., MMG achieves
a 27% improvement in body MPJRE, a 51% improvement in body
MPIJPE, and a 52% improvement in body MPJVE; compared to
SA.+GR., MMG achieves a 32% improvement in body MPJRE,
a 20% improvement in body MPJPE, and a 13% improvement in
body MPJVE. In terms of hand motion generation quality, although
MMG maintains consistency with state-of-the-art methods in Hand
MPIJPE, it still demonstrates a 24% improvement over state-of-the-
art methods in Hand MPJRE.

To further validate the superiority of MMG, we compare it with
state-of-the-art methods in Fig. 5. We visualize the holistic mo-
tion generation results in various manipulation sequences covering
both the phase of approaching manipulated objects and the phase of
operating them, and compare them with GT.

Holding Binoculars ~ Passing Camera

Grasping Mug

Taking Camera

We com-

Figure 5: Qualitative results on GRAB [41].
pare MMG with state-of-the-art methods (AG.[13]+GR.[42] and
SA.[15]+GR.[42]) against GT during the manipulation process. In
each column, we set GT to be semi-transparent and overlay it with
the results of compared methods, and mark noticeable artifacts with
red boxes.

In row 1, when the user prepares to hold the camera with one
hand and extend it outward, both state-of-the-art methods exhibit
the issue of overly small leg strides, and fail to generate a hand
posture that naturally conforms to the camera during handing it
out. In row 2, when the user prepares to pick up binoculars with
both hands, the final stopping step shows insufficient bending of
the lower legs, and the arms as well as the left hand fail to form a
natural grasping posture that conforms to the binoculars during ma-
nipulating binoculars. In row 3, the user’s final step when picking
up a teacup has an overly small leg stride, and during the drinking
motion, the legs assume an unnatural closed stance lacking coor-
dination with the hand motions. Row 4 shows the user taking the
camera with both hands, again displaying the issue of an overly
small final step stride, along with an unnatural leg-closing posture
during taking camera. These visualizations demonstrate that object
manipulation impacts holistic motion generation. Current state-of-



the-art methods, lacking object manipulation guidance, fail to pro-
duce natural and realistic holistic motions in two key ways.

First, when approaching an object, they do not properly adjust
stride length despite consistent sparse tracking signals: for objects
above the waist (rows 1 and 2), they fail to take the necessary larger
final step; for objects below the waist (rows 3 and 4), they do not
generate sufficient forward lean or downward bend. Second, with-
out semantic guidance during object manipulation, subjects exhibit
unnatural poses, including unnecessary leg positions where the legs
are too close together (rows 3 and 4); poor coordination between
arm and hand movements and body posture leads to unnatural ob-
ject manipulations (rows 1 and 2). In contrast, MMG effectively
refines the holistic motion latent code based on the extracted ma-
nipulation feature, enabling the generation of natural manipulation-
aware holistic motion that achieves better alignment with GT.

The accuracy metrics and manipulation duration visualizations
in the GRAB dataset both demonstrate that, compared to state-
of-the-art methods, MMG generates more accurate and smoother
holistic motion. In conclusion, compared to state-of-the-art meth-
ods, the holistic motions generated by MMG are significantly closer
to GT.

Table 2: Comparison of body motion estimation between state-of-
the-art methods and MMG across various body motion datasets.

Body Body Body Body

ence metric MPJJV, while degrading the motion generation quality
to 1- 8% in MPJRE and 9-24% in MPJPE.

Table 3 compares the time consumption of state-of-the-art holis-
tic motion generation methods with MMG at each step. There are
three steps in motion generation: tracking signal collection (Tra.),
motion inference (Inf.), and motion refinement (Ref., which is only
needed in SA.). Tol. denotes the total time cost. MMG signif-
icantly outperforms state-of-the-art methods in motion inference.
Specifically, compared to AG.+GR., MMG achieves a 2.64x time
cost improvement in this step, and in comparison with SA.+GR.,
MMG achieves a 3.54x time cost improvement. Furthermore,
MMG does not require the additional construction of a refine net-
work to refine generated motions, resulting in further performance
enhancements. Overall, MMG achieves real-time generation of
manipulation-aware holistic motion in VR (>24fps), delivering
a 2.62-3.55x speedup compared to state-of-the-art methods while
producing more accurate and temporally stable holistic motions.

4.3 Ablation Studies

‘We conduct an ablation study to evaluate the effectiveness of differ-
ent components in MMG. The design of MMG includes three com-
ponents: the serialized diffusion model (Diff.), the control network
module (Con.), and the object manipulation representation (Rep.).
Since Diff. serves as the foundation of MMG, we individually in-

Datasets Methods vestigate the benefits of incorporating Rep. and Con. into MMG.
MPJRE MPJPE MPIJVE MPIJV . .
! ! ! Y Table 4: Ablation on various components of MMG on GRAB. Con.
AG. + GR. 2.61 4.80 22.76 3.24 denotes the control network module in stage 3 of MMG, and Rep.
AM.[32] SA.+GR. 2.60 3.77 20.10 1.26 denotes the object manipulation representation.
MMG 2.84 4.95 20.00 0.54 Components Body Body Body Hand Hand
AG. + GR. 2.67 4.06 15.87 2.89 Con. Rep. MPJRE MPJPE MPJVE MPJRE MPJPE
ID.[31] SA. + GR. 2.61 4.50 12.43 0.67
X X 502 574 1325 1269  2.05
MMG 284 530 1169 035 v X 376 408 1275 991  0.89
AG. + GR. 4.70 6.41 30.92 6.48
TR.[25] SA.+GR. 4.60 6.10 18.54 1.32 v v 2.06 281 957 6.70 0.60

MMG 4.65 6.70 18.18 1.12

Table 2 compares the quantitative results of MMG against
state-of-the-art methods on the body motion datasets AMASS and
IDEA400. Due to the lack of manipulation content guidance, MMG
does not outperform state-of-the-art methods in body-only motion
generation, resulting in a decrease in the quality of body motion
generation of 1-8% for body MPJRE and 9-24% for body MPJPE.

Table 3: Performance (ms) comparisons of MMG with state-of-the-
art methods.

Time Cost (ms)

Methods
Col. Inf. Ref. Tot. speedup
AG. [13] +
GR.[42] 0.65 107.15 0 107.80  2.62x
SA.[15] +
GR.[42] 0.65 143.80 1.57 146.02  3.55x
MMG 0.49  40.63 0 41.12 /

To further evaluate the temporal consistency of body motion, we
employ body MPJJV (mean per joint jitter value). MPJJV calcu-
lates the mean absolute value of the jitter difference between the
generated motion and ground truth motion for each joint. Thanks
to MMG’s use of a unified inference network to synthesize holis-
tic motions while maintaining the semantic connection between the
body and hands, the temporal coherence of MMG’s body motions
is significantly enhanced. As a result, MMG demonstrates im-
provements over state-of-the-art methods in both body MPJVE and
MPIJV, achieving up to a 57% improvement in the temporal coher-

Table 4 presents a comparison of quality metrics under different
component combinations of MMG. In Table 4, MMG derived from
the various components is reoptimized and fully fitted on the GRAB
dataset.

Effectiveness of Con. Table 4 compares the impact on MMG’s
holistic motion generation quality without Con. (row 1) to that
with Con. (row 3). All metrics show significant improvement when
Con. is implemented, indicating that Con. performs excellently
in enhancing the accuracy and temporal stability of holistic motion
generation.

Effectiveness of Rep. In Table 4, we compare the effect of using
uniformly sampled points from the manipulated object as input to
Con. (row 2) with using Rep. as input for Con. (row 3). Compared
to simple uniform sampling, the implementation that uses Rep. as
input for Con. outperforms in terms of temporal consistency and,
especially, accuracy in MMG’s holistic motion generation, as show-
cased by body and hand MPJRE and MPJVE.

4.4 User Study

We conduct a psychophysical user study to evaluate the gener-
ated holistic motion quality and task performance during manip-
ulation tasks in VR using MMG and the state-of-the-art method,
respectively. Since SA.+GR. demonstrates a marked advantage
over AG.+GR. in holistic motion generation quality, with only a
2fps drop in frame rate, we select SA.+GR. as the state-of-the-art
method for this user study.
We formulate two hypotheses for the user study:

H1 Compared to the state-of-the-art method, MMG achieves sig-
nificantly higher perceived quality in the generated holistic motion
during manipulation in VR;
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Figure 6: Visualization of all tested VR scenes for object manipulation tasks in the user study.
Table 5: 2AFC lists of manipulators and observers in MEQ.
Manipulator-based 2AFCs
Ql Do you find it easy to move or rotate objects during manipulation?
Q2 Do you feel that your body and hand motions are natural when performing manipulation tasks?
Q3 Does the framerate of the holistic motion generation allow smooth manipulation?
Q4 Do you feel that your body and hands can adjust postures appropriately when manipulating different objects?
Q5 Do you think the proposed method enhances the user experience during object manipulation?
Observer-based 2AFCs

Ql Do you observe that it is easy for the manipulator to manipulate objects?
Q2 Do you think the manipulator’s body and hand motions are natural when performing manipulation tasks?
Q3 Does the holistic motion generation delay meet your expectations for manipulation tasks?
Q4 Do you observe that the manipulator’s holistic motions can appropriately adjust postures when manipulating different objects?
Q5 Do you think the proposed method enhances the user experience when observing object manipulation?

H2 Compared to the state-of-the-art method, when generating
holistic motion during manipulation, using MMG shows highly-
significant task performance improvements.

4.41 User Study Design

Setup The hardware setup and the operating environment for this
study are the same as the ‘Real-time Running Setup’ in Section 4.1.
Participants We recruit 25 participants, consisting of 13 males
and 12 females, aged between 18 and 50, with an average age of
31. None of the participants are in pilot user studies, and 11 of
them have prior experience using VR HMDs. All participants have
normal hearing and vision or have their vision corrected to normal
levels through glasses.

Conditions We use MMG to generate avatar holistic motion dur-
ing manipulation tasks as the experimental condition (EC), and use
the state-of-the-art method SA.+GR. as the control condition (CC).
Procedure We construct five manipulation-required VR scenes:
farm, barbershop, medical room, cafe, and cabin, as shown in
Fig. 6. The manipulated objects in these scenes include static and
dynamic objects of different sizes and shapes. Participants use ei-
ther one hand or two hands to manipulate these objects, and they
need to move laterally within cabin to pass through narrow pas-
sages. All participants complete the manipulation tasks in these
five scenes using EC and CC. Each experimental procedure re-
quires two participants, one as the manipulator and the other as the
observer. For each pair of participants, each tested scene is pre-
sented randomly. In each scene, the manipulator’s and observer’s
initial positions are fixed. The manipulator needs to manipulate all
objects to the target positions in the scene, while the observer mon-
itors the process from a third-person perspective. After each trial,
we record the total time taken to complete the task and ask both
participants to fill out the manipulation experience questionnaire
(MEQ), and record the manipulator-based and the observer-based
scores for each question in MEQ. The details of MEQ are shown
in Table 5, where 5 two-alternative forced choice questions (2AFC)
are designed for both the manipulator and the observer. From both
the ‘manipulator’ and ‘observer’ perspectives, MEQ evaluates the
holistic motion generation quality in terms of real-time feedback
(Q1), physical realism (Q2), smoothness (Q3), motion flexibility
(Q4), and overall user-perceived experience (Q5). Then, the pair
proceeds to the next scene. Each participant takes one turn as the
manipulator and one turn as the observer for all scenes, and com-
pleting all trials. Each participant takes an average of 33 minutes to
complete all trials. 25 (participants) x 5 (scenes) x 2 (conditions)
=250 experimental trials are collected.

4.4.2 Results and Discussion

We conduct an ANOVA analysis to evaluate the user experience and
the task performance between EC and CC.

We compare the perceived generation quality between EC and
CC 1in holistic motion through scores for all 2AFCs in MEQ. As
shown in Fig. 7, EC outperforms CC across all five core metrics
from both the manipulator and observer perspectives: real-time
feedback (Q1), physical realism (Q2), smoothness (Q3), motion
flexibility (Q4), and overall user-perceived experience (Q5). Tables
6 and 7 demonstrate statistical significance indicators for Q1-Q5
from the two perspectives. Except for Q1 being significantly bet-
ter” from the manipulator perspective, EC achieves "highly signifi-
cant” (p-value < 0.01 [16]) superiority over CC in all other scores.
Therefore, the results support H1.
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Figure 7: Average values of score between EC and CC. A single as-
terisk indicates significant differences (p-value < 0.05), and double
asterisks indicate highly significant differences (p-value < 0.01).
Although EC demonstrates significantly superior perceived qual-
ity of the generated holistic motion compared to CC from the ma-
nipulator perspective, both conditions exhibit insufficient flexibility
during object manipulation state transitions due to not meeting the
immersive frame rate requirement of 90fps. As a result, EC only
achieves a “significant improvement” in the manipulator-based Q1.
Average scores under CC across all 2AFCs in MEQ remain below

0.7, primarily due to a reduced interactive experience caused by
physical irrationality and inadequate frame rates. When the average



score exceeds 0.65 (indicating that participants tend to favor this
technology), scores from the observer perspective are consistently
lower than those from the manipulator perspective. According to
participants’ feedback, although holistic motion generation appears
natural, Steam VR’s positional drift causes intermittent avatar slid-
ing from third-person perspectives. This reflects perceived holistic
motion quality degradation from the observer perspective compared
to the manipulator perspective.

Table 8 compares the time costs between EC and CC in complet-
ing manipulation tasks across four VR scenes. By leveraging more
manipulation-aware holistic motion, EC reduces the need for ma-
nipulation corrections, while its flexible holistic motion feedback
enables more precise interactions, thereby significantly improving
manipulation efficiency. The significance metrics in Table 9 in-
dicate that EC’s task completion time is statistically significantly
shorter than that of CC in all tested scenes (p-value < 0.01). There-
fore, the results support H2.

Table 6: Statistical significance measures between EC and CC un-
der the manipulator-based score of MEQ.

measure Ql Q2 Q3 Q4 Q5

Fi240 11.91 3551 40978 22.67 3047
n? 0.05 0.13 0.15 0.09 0.11
p-value 0.02 000  0.00 0.00 0.00

Table 7: Statistical significance measures between EC and CC un-
der the observer-based score of MEQ.

measure Ql Q2 Q3 Q4 Q5

Fi240 17.08 1856  23.89 2188  25.79
n? 0.07 0.07 0.09 0.09 0.10
p-value 0.00 000  0.00 0.00 0.00

Table 8: The average manipulation completion time (s) with the
holistic motions generated by EC and CC under different VR
scenes.

medical

Condition  farm barbershop room cafe cabin
EC 81.5+12.3 36.8+47.5 4194+7.0 33.14£5.7 109.2+14.7
cc 106.2+20.3 46.1+6.8  58.44+8.5 429482 130.5+15.3

Table 9: Statistical significance measures between EC and CC in
manipulation completion times of different VR scenes.

measure farm barbershop mfodoi;fl cafe cabin
Fi a8 28.05 21.31 22.70 24.35 25.27
77,2: 0.37 0.31 0.32 0.34 0.35
p-value 0.00 0.00 0.00 0.00 0.00

5 LIMITATIONS AND FUTURE WORK

MMG is trained on the AMASS, IDEA400, TRUMANS, and
GRAB datasets. The datasets incorporate complex body postures
such as bending and crouching, along with single-handed and bi-
manual manipulation poses like pinch grips and palmar support.
They also cover 51 manipulated objects with geometric forms rang-
ing from simple cubes to complex wine glasses and aircraft mod-
els, encompassing varying contact diameters (2.92-19.39¢m). Here,
contact diameter refers to the longest distance within the hand-
object contact surface. The data foundations enable MMG to gen-
erate natural holistic motions for various object manipulation tasks.
However, MMG still exhibits limitations.

Firstly, as shown in Fig. 8: (a) when the user manipulates a
screwdriver, the hands fail to grip it naturally, instead adopting a

pinching posture; (b) when handling the suitcase, the hands pen-
etrate the model’s surface. These problems stem from two rea-
sons: 1) the dataset used to train the MMG has limited contact
diameters and types of manipulation motions, and there is a lack
of skeletal constraint modeling. Specifically, for elongated objects
with a contact diameter less than 4.15¢m, the holistic motions in the
dataset are restricted to pinching, lacking more diverse actions such
as gripping; 2) the dataset is deficient in cases involving objects
with a contact diameter greater than 19.39¢m, which limits the prior
knowledge regarding the range of hand opening and, in turn, may
cause the MMG to exhibit fixed hand motion patterns or cause pen-
etration artifacts, leading to failed cases. Secondly, the absence of
articulated objects prevents MMG from supporting holistic motion
generation for rotational-axis manipulations, such as opening boxes
or pulling drawers. Thirdly, MMG currently focuses on generating
manipulation-aware holistic motion in the realm of Joint Funds of
the National Natural Science Foundation of Chinahuman-object in-
teraction, and has not yet explored the motion adaptation problem
caused by geometric and physical differences between virtual and
real worlds in the realm of human-scene interaction.

To address the above limitations, in future work, a comprehen-
sive, holistic motion dataset that incorporates objects with hinge
structures and richer sizes needs to be constructed to enrich the
prior knowledge base. Furthermore, the virtual-physical perception
alignment model needs to be studied to explore the manipulation-
aware motion generation mechanism under virtual-real spatial dis-
crepancies within a human-mix interaction framework.

6 CONCLUSION

We study the problem of generating
human body and hand motions si-
multaneously, i.e., holistic motion,
based on sparse tracking signals
in manipulation-enabled VR scenes.
Our key finding is that the manipula-
tion content significantly influences | }
the holistic motion, especially the 2 ] ®

body motion. Based on this, we pro-  Figure 8: Failed cases of
pose a novel object manipulation- Manipulating objects with
aware holistic human motion gener- extremely small (a) and
ation method that uses a specifically ~large (b) contact diameters
designed object manipulation repre-  Using MMG.

sentation to guide the framework in generating manipulation-aware
holistic motions. Our method achieves real-time holistic motion
generation (>24fps) in VR. Compared to state-of-the-art methods,
our method achieves a 39% improvement in holistic motion gener-
ation quality while also delivering a 3.55x speedup in generation
performance. Experimental results of the user study demonstrate
that, compared to the state-of-the-art method, our method signifi-
cantly enhances the perceived quality of the generated holistic mo-
tion during VR manipulations and completes the manipulation tasks
with highly significant performance advantages.
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