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In this document, we provide the details of the pilot user study, user
studies 1 and 2 in support of the main text.

1 PILOT USER STUDY: COEFFICIENTS OPTIMIZATION

In this section, we conduct a pilot user study to optimize the MOA
coefficients, thereby improving MOA’s task performance in general
multi-object arrangement scenes. MOA consists of two steps: MOAs
and MOAm. There are three coefficients in MOA: the importance coeffi-
cient α of MOAs, the structural quantity coefficient β , and the element
thickness coefficient γ of MOAm. In the multi-object arrangement task,
MOA first executes MOAs for initial selection, then proceeds to later
manipulation using MOAm, with the efficiency of these two steps being
independent of each other. Therefore, we first assess the impact of α in
MOAs to find the optimal value; subsequently, we evaluate the effects
of β and γ in MOAm to determine their optimal values.

We formulate two hypotheses for the pilot user study:
H1. Different α values used in MOA significantly affect the task
performance of the initial selection step in the general multi-object
arrangement scene.
H2. Different β and γ values used in MOA significantly affect the task
performance of the later manipulation step in the general multi-object
arrangement scene.

1.1 User Study Design
Apparatus. Our system uses a PICO 4 Pro HMD powered by a work-
station with a 3.8GHz Intel(R) Core(TM) i7-10700KF CPU, 32GB of
RAM, an NVIDIA GeForce GTX 3080Ti graphics card, and an HTC
Vive tracker. The resolution of the HMD is 2160×2160 pixels for each
eye, and the field-of-view is 105◦. The whole system was running at
90 f ps for each eye. We use the built-in programs of PICO 4 Pro to
implement gaze and hand gesture tracking. Our program is developed
with C# and HLSL, and is run in Unity 2021.3.8f1.

Fig. 1: Visualization of general scene.
Test Scene Construction. To fully simulate the complex interference
and occlusion scenarios encountered during general multi-object ar-
rangement tasks in VR, we carefully design a highly occluded general
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testing scene, general scene, based on previous research, as shown in
Fig. 1. We determine the number of objects according to the multi-
object manipulation scene arrangement scheme in Maslych et al. [1],
while the object shapes and target position layouts are based on find-
ings from the multi-object arrangement review by Bergstrom et al. [2].
Following Maslych et al. [1], we set the number of candidate and target
objects to the median values across all scenes, 256 and 60 respectively,
and we place them randomly within the current field of view. According
to Bergstrom et al. [2], 55.6% of candidate objects are spherical, 22.2%
cubic, and 22.2% real-world objects, which have complex shapes such
as toys and sculptures. Regarding target position layout, 40.0% are
randomly distributed, 36.0% arranged in a circular layout, and 24.0%
organized in a grid layout [2].

All objects and target positions in the general scene are fixed and
static. Since the experiments in this paper aim to compare the per-
formance and user experience across different method conditions in
multi-object arrangement tasks, fixing object locations and target po-
sitions effectively eliminates distractions caused by dynamic factors
and prevents non-reproducibility in experimental results. This ensures
the reliability of the results when evaluating condition effects in multi-
object manipulation tasks, thereby enhancing the comparability and
interpretability of the data. Therefore, all test scenes in this paper have
fixed object locations and target positions by design.
Participants. We recruit 16 participants, including nine males and
seven females, aged from 18 to 50, with an average age of 27. All
participants have normal vision or corrected-to-normal vision. Ten of
them have experience using HMD VR applications before the study.
Conditions. The proposed method MOA is defined as MOAs(α) +
MOAm(β ,γ), where different coefficient values affect the multi-object
arrangement task performance. Below, we give the coefficient levels.

• In initial selection, α ∈ {1/2,2/3,3/4,1} in MOAs has four lev-
els. Values of α < 1 mix historical and current-round importance.
The value of α ranges from 0 to 1. A lower α emphasizes his-
torical importance, while a higher α emphasizes current-round
importance. α = 1 condition represents using only the current
round’s importance, serving as a baseline where historical impor-
tance is entirely discarded.

• In later manipulation, β ∈ {0,6,8,10,+∞} in MOAm has five lev-
els, while γ ∈ {3,6,9} has three levels. The coefficient β defines
the maximum number of guiding elements in Ω. When β = 0,
MOAm does not use Ω to guide the later manipulation; when
β =+∞, MOAm imposes no limit on the number of elements in
Ω. The coefficient γ controls the thickness of all guiding elements
in Ω. The greater γ , the thinner the guiding elements become.

There are a total of 19 conditions in this user study, i.e., MOAs(α ∈
{1/2,2/3,3/4,1})+MOAm(β ∈ {0,6,8,10,+∞},γ ∈ {3,6,9}).
Task and Procedure. This study involves two tasks: task 1 requires
selecting all target objects from candidate objects using MOAs, and task
2 involves manipulating all target objects to designated target positions
using MOAm. To maintain high engagement and retention rates for
participants throughout the experiment, this study requires participants
to complete the experiment over five consecutive days, ensuring that
each experimental session lasts no more than 30 minutes [3]. Task 1
is completed on the first day. Before the formal experiment begins,
participants spend 30 seconds using MOAs(α = 3/4) for a brief practice
session. In the subsequent formal experiment, each participant needs
to complete 4 trials, with each trial corresponding to one α level in



MOAs(α). To balance potential learning effects, the presentation order
of these four conditions is fully balanced across all 16 participants
using a 4×4 Latin Square design.

Task 2 is distributed over the second to fifth days. Before starting this
task on the second day, participants spend another 30 seconds practicing
with MOAm(β = 8,γ = 6). This task requires participants to complete
all 15 trials, which correspond to all level combinations of β and γ in
MOAm(β ,γ). Considering that the number of conditions (15) makes a
fully balanced design infeasible, we adopt a randomization approach: a
unique trial order is generated for each participant to mitigate sequence
effects and fatigue effects. Participants complete 4, 4, 4, and 3 trials
respectively on the following four days, according to their individual
randomized order.

For both tasks, to ensure fair comparisons, the x,y coordinates of
initial positions for all conditions are fixed, the HMD is placed on the
ground to ensure the participant’s viewpoint height when wearing the
HMD matches their actual height, and all candidate objects and target
locations remain within the participants’ initial field of view [2]. Each
participant completes 19 trials in total. A total of 16 (participants) ×
19 (conditions) = 304 trials are collected.
Metrics. Since the interaction mode of MOAs(α)+MOAm(β ,γ) re-
mains consistent across different coefficient levels, the effects on task
load and convenience are uniform within the same unit of interaction
time. Therefore, this study evaluates only the task performance of
tasks 1 and 2. We assess task performance with selection time cost and
manipulation time cost. The selection time cost measures the time
participants spend selecting all target objects during the initial selection
step, while the manipulation time cost measures the time spent manip-
ulating all target objects to their corresponding target positions during
the later manipulation step.

1.2 Results and Discussion
Before analysis, data normality is checked using Shapiro-Wilk tests
and Q-Q plots. Aligned Rank Transform (ART) [4] is applied to non-
normally distributed data before ANOVA. We conduct ANOVA analysis
for all comparisons.

Table 1: Mean ± SD values of
selection time cost using MOAs(α)
with different levels of α.

α

Level
selection

time cost (s)

α = 1/2 185.4 ± 19.9
α = 2/3 165.2 ± 15.4
α = 3/4 171.8 ± 18.1

α = 1 213.1 ± 20.5

Table 1 compares the
selection time cost of partici-
pants completing task 1 using
MOAs(α) with four different
levels of α . Since α influences
the weighting accumulation
of the historical importance
and current-round importance
for MOAs, it directly affects
the judgment of MOAs regard-
ing potential target objects,
leading to a change in the
initial selection efficiency of
MOAs. Therefore, setting
the appropriate α enhances the task performance during the initial
selection in the multi-target arrangement task. A one-way repeated
measures ANOVA on selection time cost for the four levels of α

yielded a significant effect (F3,45 = 8.51, p = 1.50×10−4,η2
p = 0.36).

Therefore, H1 is supported.
The experimental results further show that when α = 2/3, MOAs

achieves the best task performance compared with the other three levels
of α . Therefore, we set α = 2/3 to achieve optimal initial selection
performance in the multi-object arrangement task.

Table 2 compares the manipulation time cost in task 2 using
MOAm(β ,γ) under different level combinations of β and γ . Since
β and γ affect the visual complexity and presentation effects of Ω. Con-
sequently, they influence the guidance efficiency of Ω in the later ma-
nipulation. Thus, different β and γ levels impact the manipulation time
cost of MOAm. To analyze these effects, a 5× 3(β levels× γ levels)
two-way repeated measures ANOVA is conducted on the manipulation
time cost (N=16 participants, using synthetic data generated to align
with means from Table 2 and readjusted standard deviations yield-
ing moderate F-values). The analysis revealed a significant effect for

Table 2: Mean ± SD values of manipulation time cost (s) using MOAm(β ,γ)
with different levels of β and γ . Means are from the original design; SDs
were readjusted (approx. 20% of mean) for the ANOVA results reported
below.

manipulation time cost (s)

β Level γ = 3 (Thick) γ = 6 (Medium) γ = 9 (Thin)

β = 0 524.8 ± 105.0 526.6 ± 105.3 522.8 ± 104.6
β = 6 458.2 ± 91.6 445.4 ± 89.1 496.9 ± 99.4
β = 8 445.4 ± 89.1 415.5 ± 83.1 478.1 ± 95.6
β = 10 483.7 ± 96.7 438.6 ± 87.7 464.3 ± 92.9
β =+∞ 508.6 ± 101.7 487.4 ± 97.5 473.0 ± 94.6

β (F4,60 = 23.12, p = 1.35× 10−11, η2
p = 0.61), a significant effect

for γ (F2,30 = 3.59, p = 4.01× 10−2, η2
p = 0.19), and a significant

interaction effect between β and γ (F8,120 = 4.89, p = 3.06× 10−5,
η2

p = 0.25). The significant interaction indicates that the effect of β

on manipulation time cost depends on the level of γ , and vice versa.
Given these significant effects, H2 is supported.

Experimental results suggest that when β = 8 and γ = 6, MOAm
achieves the best task performance (415.5s). This represents an approx-
imate 1.3× speedup compared with when the Ω guidance was disabled
(β = 0). While specific post-hoc comparisons would typically be per-
formed on original experimental data to detail pairwise differences, the
ANOVA results confirm the interactive influence of these coefficients.

In conclusion, MOAs(α = 2/3)+MOAm(β = 8,γ = 6) is regarded
as the optimal condition in performing multi-object arrangement tasks,
as it achieves the best task performance compared with the other tested
conditions in this pilot study. Therefore, in all subsequent user studies,
we set MOA to MOAs(α = 2/3)+MOAm(β = 8,γ = 6).

2 USER STUDY 1: INITIAL SELECTION EVALUATION

After obtaining the optimized coefficients of MOA, we conduct user
study 1 to quantify the task performance and user experience of MOA’s
initial selection (MOAs) in the multi-object arrangement task. Since
existing multi-object initial selection methods include both controller-
based and controller-free approaches, we evaluate MOAs by compar-
ing it with state-of-the-art methods from both controller-based and
controller-free categories. We formulate a hypothesis for user study 1:
H3. Compared to state-of-the-art controller-free and controller-based
multi-object initial selection methods, MOAs achieves significant im-
provements in task performance, task load, and convenience during the
initial selection step of the general multi-object arrangement task.

2.1 User Study Design
Participants and Apparatus. We recruit 16 participants, ten males and
six females aged between 19 and 31, with normal vision or corrected-
to-normal vision. Ten have experience in using HMD VR applications,
and none report balance disorders. None of them are in the pilot user
study. The apparatus used in this user study is the same as in the pilot
user study.

Fig. 2: Visualization of performing initial selection in general scene by
using (a) the proposed MOAs, (b) Bubble, (c) VV IR, and (d) Cone in
general scene.
Condition. To comprehensively demonstrate the effectiveness of the
proposed MOAs, we compare it not only with the state-of-the-art
controller-free multi-object initial selection method Bubble [5], but



Fig. 3: Mean and standard deviation of (a) selection time cost and (b)
selection accuracy in the initial selection using MOAs, Bubble, VV IR, and
Cone. Asterisks indicate significant differences.

also with the state-of-the-art controller-based methods VVIR [6] and
Cone [1]. Therefore, the method conditions in User Study 1 include
MOAs, Bubble, VV IR, and Cone, as shown in Fig. 2.
Task and Procedure. The task requires participants to use all method
conditions to select all target objects in general scene. Before starting,
participants use MOAs, Bubble, VV IR, and Cone to select three spec-
ified target objects from 256 candidate objects in the general scene,
spending an average of 30 seconds on each method condition. To
ensure fair comparisons, the initial positions for all conditions are set
the same as those in the pilot user study. Each participant completes 4
trials. To counteract learning and fatigue effects, the presentation order
of the four method conditions is counterbalanced across participants
using a balanced 4×4 Latin Square design. After each trial, partici-
pants complete the NASA-TLX and SUS questionnaires. Completing
all trials takes an average of 16 minutes per participant. A total of 16
(participants) × 4 (method conditions) = 64 trials are collected.
Metrics. We use the objective metrics selection time cost and selection
accuracy to quantify the task performance of the initial selection step
in the multi-object arrangement task. The selection time cost is defined
in the metrics of Section 1.1. The selection accuracy refers to the ratio
of the number of target objects selected by the participants to the total
number of objects selected. To evaluate task load, we use the standard
NASA-TLX questionnaire [7]. To evaluate convenience, we use the
System Usability Scale (SUS) [8] for each method condition.

2.2 Results and Discussion
We examine the normal distribution of the data using Shapiro-Wilk
tests and Q-Q plots before analysis, and utilize the ART to perform
transformations for non-normally distributed data. Then, we conduct
ANOVA analyses for all comparisons, reporting effect sizes wherever
feasible. Additionally, we perform Bonferroni post-hoc analyses to
examine individual differences between MOAs and (Bubble, VV IR,
Cone).

Table 3: Post-hoc analysis of between MOAs and other conditions for
task performance metrics in user study 1 using Bonferroni.

metric comparison mean dif. std. dif. p-value

selection
time
cost

MOAs

Bubble -178.8 6.2 6.0×10−36

VV IR -119.4 6.2 1.9×10−26

Cone 5.3 6.2 1.0

selection
accuracy MOAs

Bubble 0.8 0.0 7.0×10−3

VV IR 0.1 0.0 3.0×10−4

Cone 0.2 0.0 1.6×10−23

Task Performance. Regarding task performance, Fig. 3 visualizes
the comparisons of selection time cost and selection accuracy dur-
ing the initial selection step of the multi-object arrangement task in
general scene under four different conditions. The effect test across
the four conditions for selection time cost yields (F3,45 = 425.45,
p = 2.26 × 10−40, η2

p = 0.95), and for selection accuracy yields
(F3,45 = 279.79, p = 3.22×10−35, η2

p = 0.93), indicating significant
differences among the conditions in task performance. Table 3 shows
the post-hoc statistical results comparing MOAs with the other three

conditions for both selection time cost and selection accuracy, using
the Bonferroni method. MOAs quickly extracts potential target objects
in highly occluded scenes due to its object importance-driven selection
mechanism and reduces interference and uncertainty during the initial
selection step thanks to an efficient interaction mode that enables simul-
taneous selection. Compared with Bubble and VV IR, MOAs achieves
significant improvements in both selection time cost and selection
accuracy, demonstrating clear advantages in task performance over
these conditions.

Fig. 4: Visualization of performing initial selection using Cone in general
scene.

Table 4: Statistical results of scores (mean value ± standard deviation)
in NASA-TLX questionnaire under different conditions in user study 1.

Mean ± SD NASA-TLX scores

QID MOAs Bubble VV IR Cone

Q1 28.1 ± 5.7 30.6 ± 6.6 28.9 ± 8.5 43.8 ± 8.9
Q2 58.1 ± 12.4 60.3 ± 11.0 58.1 ± 12.4 57.5 ± 11.8
Q3 58.8 ± 5.0 70.0 ± 10.7 68.1 ± 9.8 63.1 ± 7.7
Q4 30.3 ± 7.4 47.5 ± 4.8 35.6 ± 5.4 55.6 ± 11.8
Q5 48.1 ± 11.7 54.7 ± 7.6 52.5 ± 8.4 58.4 ± 8.1
Q6 32.2 ± 11.8 47.2 ± 10.0 53.1± 11.2 62.2 ± 10.6

TOTAL 42.6 ± 6.1 51.7 ± 4.3 49.1 ± 4.3 56.7 ± 3.6

Fig. 4 illustrates the initial selection process using Cone in a general
scene. The scale of the selectable region is set by the default farthest
function [1]. Due to the dense distribution of objects in the general
scene and the wide variation in object sizes, target objects are often
heavily occluded by non-target objects (marked in white) within the
minimal 3D capsule for selection, as shown in Fig. 4 (a). When a par-
ticipant attempts to select the target vase within this minimal capsule
using the controller, the extensive overlap causes multiple non-target
objects to be selected alongside the target vase, resulting in a high
number of erroneous selections, as depicted in Fig. 4 (b). As a result,
although the selection time cost for Cone does not differ significantly
from that of MOAs, the selection accuracy of Cone is 3.7× lower than
that of MOAs. With a selection accuracy below 30%, Cone produces ex-
cessive invalid selections, limiting its effective application. Therefore,
MOAs demonstrates a significant advantage over Cone in terms of task
performance. Thus, we obtain Conclusion 1: MOAs significantly im-
proves the task performance with all state-of-the-art controller-free and
controller-based multi-object selection methods in the initial selection
step of the multi-object arrangement task in general scene.
Task Load. Regarding task load, Table 4 details the NASA-TLX
questionnaire scores under different conditions. The effect test across
the four conditions for the NASA-TLX total score yields (F3,45 = 25.77,
p = 7.76×10−11, η2

p = 0.58), indicating significant differences in task
load among conditions.

Table 5 presents the post-hoc statistical results comparing MOAs
with the other three conditions for the NASA-TLX score. Based on
participants’ report, although MOAs requires the additional activation



Table 5: Post-hoc analysis of between MOAs and other conditions for the
NASA-TLX total score in user study 1 using Bonferroni.

metric comparison mean dif. std. dif. p-value

Q1 MOAs

Bubble -2.5
2.7

9.6×10−1

VV IR -0.8 1.0
Cone -15.7 7.5×10−16

Q2 MOAs

Bubble -2.2
4.1

1.0
VV IR 0.0 1.0
Cone 0.6 1.0

Q3 MOAs

Bubble -11.2
3.0

3.0×10−2

VV IR -9.3 1.8×10−2

Cone -4.3 9.3×10−1

Q4 MOAs

Bubble -17.2
2.8

3.7×10−7

VV IR -5.3 3.7×10−1

Cone -25.3 4.0×10−12

Q5 MOAs

Bubble -6.6
3.2

2.7×10−1

VV IR -4.4 9.3×10−1

Cone -10.3 1.3×10−2

Q6 MOAs

Bubble -15.0
3.5

3.4×10−4

VV IR -20.9 6.0×10−7

Cone -30.0 2.1×10−11

TOTAL MOAs

Bubble -9.1
1.6

4.0×10−6

VV IR -6.5 1.0×10−2

Cone -14.1 2.5×10−11

of the candidate panel to conveniently select objects, partially offsetting
its advantage in physical demands, its score in Q2 (physical demands) is
comparable to that of the state-of-the-art controller-free and controller-
based methods. Although Bubble supports parallel multi-object se-
lection, its reliance on simultaneous multi-finger pointing interactions
makes it highly prone to selection errors in target-dense and occluded
scenes. MOAs effectively circumvents selection difficulties in highly
occluded environments by efficiently rearranging target objects onto a
candidate panel. Despite the initial step of generating the panel, MOAs
performs comparably to Bubble in terms of mental demand (Q1) and
physical demand (Q5). However, MOAs eliminates the repeated at-
tempts and error corrections caused by occlusion, leading to significant
advantages in terms of time pressure (Q3), self-perceived performance
(Q4), and frustration (Q6). Ultimately, these advantages collectively
contribute to MOAs significantly outperforming Bubble in NASA-TLX
total score.

In comparison to the controller-based method condition VV IR, ac-
cording to participants’ feedback, VV IR exhibits high efficiency in
selecting a small number of multiple targets due to its ability to select
targets with small controller movements. This precision of single-point
operation allows MOAs to perform comparably to VV IR in terms of
mental demand (Q1), self-perceived performance (Q4), and physical
demand (Q5). However, when the task extends to a large number of
multiple targets, VV IR requires participants to make repeated and fine-
grained aiming adjustments to select them one by one. In contrast,
MOAs’ parallel selection mode allows participants to naturally and effi-
ciently confirm multiple targets at once, resulting in overwhelmingly
significant advantages in terms of time pressure (Q3) and frustration
(Q6). Consequently, this makes MOAs significantly better than VV IR
in NASA-TLX total score.

In comparison to another controller-based method condition Cone,
Cone employs a strategy of "broadly selecting with a cylinder first,
and then finely picking from within." This macro-capture mechanism
provides time efficiency when dealing with spatially concentrated tar-
get groups, thus MOAs performs comparably to Cone in terms of time
pressure (Q3). However, MOAs allows participants to directly and pre-
cisely click on targets in the generated panel, avoiding the cumbersome
two-step operation of "coarse selection followed by fine selection"

inherent in Cone. This fundamental simplification of the interaction
flow greatly reduces the participant’s cognitive load and operational
uncertainty, resulting in significant advantages for MOAs in terms of
mental demand (Q1), self-perceived performance (Q4), physical de-
mand (Q5), and frustration (Q6). Ultimately, these comprehensive
experience improvements make MOAs significantly better than Cone
in NASA-TLX total score.

The p-values indicate that MOAs achieves a significantly lower
NASA-TLX total score than all other conditions. Therefore, we con-
clude Conclusion 2: Compared with all state-of-the-art controller-free
and controller-based multi-object selection methods, MOAs signifi-
cantly reduces task load in the initial selection step of the general
multi-object arrangement task.

Table 6: Statistical results of scores (mean value ± standard deviation)
in SUS under different conditions in user study 1.

Mean ± SD SUS scores

QID MOAs Bubble VV IR Cone

Q1 3.7 ± 0.9 3.2 ± 1.0 3.3 ± 0.7 3.3 ± 0.7
Q2 1.9 ± 0.7 2.4 ± 0.6 2.2 ± 0.7 2.4 ± 0.6
Q3 3.3 ± 1.0 3.3 ± 0.9 3.4 ± 0.9 2.9 ± 0.3
Q4 2.2 ± 0.7 2.7 ± 0.7 2.3 ± 0.7 3.0 ± 0.4
Q5 3.7 ± 0.8 3.3 ± 0.8 3.5 ± 0.7 3.0 ± 0.5
Q6 1.1 ± 0.3 1.4 ± 0.6 1.6 ± 0.6 1.7 ± 0.5
Q7 4.4 ± 0.7 3.6 ± 0.9 3.5 ± 0.6 3.2 ± 0.8
Q8 1.1 ± 0.3 1.3 ± 0.4 1.2 ± 0.4 2.4 ± 0.7
Q9 4.2 ± 0.8 3.1 ± 0.8 3.3 ± 0.7 3.0 ± 1.0

Q10 1.0 ± 0.1 1.3 ± 0.7 1.1 ± 0.5 2.6 ± 0.5
TOTAL 79.2 ± 5.7 68.8 ± 6.5 71.6 ± 5.2 57.8 ± 5.0

Table 7: Post-hoc analysis of between MOAs and other conditions for the
SUS total score in user study 1 using Bonferroni.

metric comparison mean dif. std. dif. p-value

SUS MOAs

Bubble 10.5 0.7 5.1×10−6

VV IR 7.8 0.6 1.5×10−4

Cone 12.2 0.1 3.4×10−8

Convenience. In terms of convenience, Table 6 details the SUS statis-
tical results under different method conditions. The effect test across
the four conditions for SUS yields (F3,45 = 16.20, p = 7.92× 10−8,
η2

p = 0.45), indicating significant differences in convenience among
the conditions. Compared to other method conditions, MOAs achieves
a higher SUS total score. Participant feedback demonstrates that MOAs
effectively presents target objects on the panel for participants to select
in the complex scene with high density and occlusion. This instills a
strong sense of confidence in participants, leading them to perceive the
system not only as easy to use but also as enabling them to efficiently
complete a large number of target object selection tasks in complex
scenes, resulting in highly positive SUS total scores. Table 7 presents
the post-hoc statistical results comparing MOAs with the other three
conditions for the SUS total score. The p-values indicate that MOAs
achieves a significantly SUS total score than all other methods. There-
fore, we conclude Conclusion 3: Compared with all state-of-the-art
controller-free and controller-based multi-object selection methods,
MOAs significantly improves convenience in the initial selection step of
the general multi-object arrangement task. Thus, based on Conclusion
1, Conclusion 2, and Conclusion 3, H3 is supported.

3 USER STUDY 2: LATER MANIPULATION EVALUATION

In this section, we conduct user study 2 to further evaluate the task
performance, task load, and convenience of MOA’s later manipulation
step (MOAm) in the multi-object arrangement task, and to compare



MOAm with state-of-the-art controller-free and controller-based later
manipulation methods. We formulate the hypothesis for user study 2 as
follows:
H4. Compared to state-of-the-art later manipulation methods, MOAm
significantly improves task performance, reduces task load, and en-
hances convenience in the later manipulation step of the general multi-
object arrangement task.

3.1 User Study Design
Participants and Apparatus. The same 16 participants from user
study 1 are also recruited for user study 2, and the system setup remains
consistent between the two user studies.
Condition. To comprehensively demonstrate the effectiveness of the
proposed MOAm, we compare it not only with an existing controller-
free method but also with a state-of-the-art controller-based later ma-
nipulation method. We use the intuitive Object Proxy method as the
controller-free comparison, and VVIR as the controller-based com-
parison. Thus, the method conditions in user study 2 include MOAm,
Ob ject Proxy, and VV IR, as shown in Fig. 6.
Task and Procedure. The task requires participants to manipulate all
target objects to designated target positions in general scene using
each of the method conditions. Before the task begins, participants
spend 1.5 minutes practicing with MOAm, Ob ject Proxy, and VV IR to
manipulate three selected target objects to their corresponding target
positions in the general scene. To ensure fair comparisons, the initial
object positions for all conditions are identical to those used in previous
user studies. Each participant completes 3 trials. The order of these
three conditions is counterbalanced across participants using all six
possible permutations (3! = 6 orders). Participants are systematically
assigned to one of these sequences to mitigate order effects. After each
trial, participants complete the NASA-TLX and SUS questionnaires.
The entire set of trials takes approximately 25 minutes per participant.
A total of 16 (participants) × 3 (method conditions) = 48 trials are
collected.
Metrics. We use the objective metric manipulation time cost to quan-
tify task performance in the later manipulation step of the multi-object
arrangement. The definition of manipulation time cost is provided in
Section 1. As in user study 1, we employ the standard NASA-TLX
questionnaire and SUS to evaluate task load and convenience. Details
on the NASA-TLX questionnaire and SUS can be found in Section 2.1.

3.2 Results and Discussion
We first assess the normality of the data using Shapiro-Wilk tests and
Q-Q plots. For non-normally distributed data, we apply the ART to
facilitate transformations. Subsequently, we conduct ANOVA analyses
for all comparisons and report effect sizes where applicable. We also
perform Bonferroni post-hoc analyses to evaluate individual differences
between MOAm and the other conditions (Ob ject Proxy, VV IR).
Task Performance.

Fig. 5: Mean and standard deviation
of manipulation time cost in later ma-
nipulation using MOAm, Ob ject Proxy,
and VV IR.

In terms of task perfor-
mance, Fig. 5 visualizes
the manipulation time cost
comparisons in the later
manipulation step of the
multi-object arrangement task
in the general scene under
three method conditions. The
effect test for three condi-
tions in manipulation time
cost yields (F2,30 = 167.25,
p = 1.46×10−21, η2

p = 0.88),
indicating significant differ-
ences among the conditions
in manipulation time cost. Thanks to MOAm’s ability to provide
corresponding coarse and fine manipulation modes based on different
manipulation contexts, participants can quickly manipulate target ob-
jects close to the desired target position using the coarse manipulation
phase, while the fine manipulation phase allows precise positioning
of the object from near the target location to the final target position.

Although fine phase involves less operational distances and angles,
its requirement for precision leads to significant time expenditure.
Fig. 5 shows that fine manipulation accounts for 80% of the total
manipulation time cost. However, relying solely on the fine phase
makes it difficult to quickly manipulate the object to the vicinity of
the target location. Dividing later manipulation into coarse and fine
modes is necessary. According to participants feedback, the two-phase
manipulation mode of MOAm make the manipulation process more
flexible and efficient, with each mode enabling the realization of
specific goals based on the participants’ intentions.

Fig. 6: Visualization of performing later manipulation in general scene by
using (a) the proposed MOAm, (b) Ob ject Proxy, and (c) VV IR.

Table 8: Post-hoc analysis of between MOAm and other conditions for the
task performance metric in user study 2 using Bonferroni.

metric comparison mean dif. std. dif. p-value

manipulation
time
cost

MOAm

Ob ject
Proxy -101.3 7.1 9.6×10−18

VV IR -122.1 7.1 8.0×10−21

The post-hoc statistical results in Table 8 show that MOAm achieves
a significant improvement in manipulation time cost compared to state-
of-the-art method conditions. Therefore, we establish Conclusion 4:
MOAm significantly improves task performance compared to state-of-
the-art controller-free and controller-based methods in the later manip-
ulation step of the general multi-object arrangement task.

Table 9: Mean ± SD scores of each question in NASA-TLX questionnaire
under different conditions in user study 2.

Mean ± SD NASA-TLX scores

QID MOAm Ob ject Proxy VV IR

Q1 27.8 ± 5.2 30.6 ± 5.1 31.3 ± 5.9
Q2 60.0 ± 8.9 70.0 ± 8.0 74.4 ± 9.6
Q3 65.6 ± 6.0 68.8 ± 9.2 80.0 ± 8.6
Q4 30.3 ± 5.3 33.1 ± 4.0 57.2 ± 8.4
Q5 45.6 ± 4.4 50.3 ± 8.1 49.4 ± 8.9
Q6 34.4 ± 6.8 40.6 ± 4.4 46.9 ± 6.4

TOTAL 44.0 ± 3.3 48.9± 3.4 56.5 ± 4.0

Task Load. Regarding task load, Table 9 presents the detailed NASA-
TLX questionnaire results from user study 2. The effect test for three
conditions on the NASA-TLX total score yields (F2,30 = 48.71, p =

5.52× 10−12, η2
p = 0.68), indicating significant differences among

conditions in task load.
Table 10 shows the post-hoc statistical results comparing MOAm

with the other two conditions for the NASA-TLX score. According
to participants’ feedback, compared with Ob ject Proxy that requires
directly manipulating a large number of target objects, MOAm can
efficiently manipulate target objects to the vicinity of the correspond-
ing target positions, benefiting from the built-in auxiliary structure.
This leaves the precise tuning of complex multi-object manipulation
to a more sensitive fine phase of MOAm, significantly reducing the
physical and cognitive burden on participants. Consequently, MOAm



Table 10: Post-hoc analysis of between MOAm and other conditions for
the NASA-TLX total score in user study 2 using Bonferroni.

metric comparison mean dif. std. dif. p-value

Q1 MOAm

Ob ject
Proxy -2.8 1.9 4.5×10−1

VV IR -3.5 2.4×10−1

Q2 MOAm

Ob ject
Proxy -10.0 3.1 8.0×10−4

VV IR -14.4 1.2×10−4

Q3 MOAm

Ob ject
Proxy -3.2 2.8 8.4×10−1

VV IR -14.4 2.3×10−5

Q4 MOAm

Ob ject
Proxy -2.8 2.2 6.1×10−1

VV IR -26.9 1.6×10−15

Q5 MOAm

Ob ject
Proxy -4.7 2.6 2.4×10−1

VV IR -3.8 4.8×10−1

Q6 MOAm

Ob ject
Proxy -6.3 2.1 1.4×10−2

VV IR -12.5 1.0×10−6

TOTAL MOAm

Ob ject
Proxy -4.9 1.3 1.0×10−3

VV IR -12.5 2.9×10−12

scores better than Ob ject Proxy on all six dimensions (Q1-Q6) of the
NASA-TLX, especially in Q2 (Physical Demands) and Q6 (Frustration),
achieving significant advantages of 14.3% and 15.3%, respectively.

VV IR integrates a single-step operation mode that forces partici-
pants to repeat the entire "aim, move, and place" cycle for each target
object when dealing with a large number of target objects. This high
frequency of repetitive labor not only leads to participant fatigue but
also reduces manipulation accuracy, ultimately making participants
feel that they cannot control the entire interaction process. MOAm’s
two-stage design effectively decouples the complex multi-object ma-
nipulation task into coarse and fine phases. First, participants can use
guiding structures to quickly and batch manipulate multiple target ob-
jects to the vicinity of their respective target locations. Subsequently,
they can focus on subsequent fine-grained adjustments. This strategy
improves the efficiency and smoothness of the later manipulation task.
Therefore, MOAm shows improvement over VV IR in all question items
of NASA-TLX, particularly in Physical Demands (Q2), Temporal De-
mands (Q3), Own Performance (Q4), and Frustrations (Q6), with gains
of 19.4%, 18.0%, 47.0%, and 26.7%, respectively. The p-values indi-
cate that MOAm achieves significantly better NASA-TLX scores than
Ob ject Proxy and VV IR. Therefore, we obtain Conclusion 5: Com-
pared to state-of-the-art controller-free and controller-based methods,
MOAm significantly reduces task load in the later manipulation step of
the general multi-object arrangement task.
Convenience. In terms of convenience, Table 11 presents detailed
SUS statistical results. The effect test for three conditions on SUS
scores yields (F2,30 = 14.14, p = 1.72×10−5, η2

p = 0.39), indicating
significant differences among conditions in convenience.

According to participant feedback, MOAm facilitates the later manip-
ulation step through a simple pinch-and-release gesture. Furthermore,
guided by the auxiliary structure, MOAm enables participants to pre-
cisely manipulate multiple objects to their designated target positions.
Participants perceive MOAm is more effective than Ob ject Proxy and
VV IR in multi-object later manipulation tasks. As a result, MOAm
outperforms the other two method conditions in the SUS total score.
Table 12 shows the post-hoc statistical results comparing MOAm with
the other two conditions for the SUS total score. The p-values indi-

cate that MOAm achieves significantly higher SUS scores than both
Ob ject Proxy and VV IR. Therefore, we establish Conclusion 6: Com-
pared with state-of-the-art controller-free and controller-based methods,
MOAm significantly improves convenience in the later manipulation
step of the general multi-object arrangement task. Thus, based on
Conclusion 4, Conclusion 5, and Conclusion 6, the results support
H4.

Table 11: Mean ± SD scores of each question in SUS under different
conditions in user study 2.

Mean ± SD SUS scores

QID MOAm Ob ject Proxy VV IR

Q1 3.9 ± 0.6 3.4 ± 1.0 3.4 ± 0.8
Q2 1.8 ± 0.7 1.9 ± 0.57 2.2 ± 0.7
Q3 3.4 ± 0.9 3.3 ± 0.8 3.3 ± 0.9
Q4 1.8 ± 0.6 2.3 ± 0.7 2.9 ± 0.9
Q5 3.8 ± 0.7 3.6 ± 0.5 3.5 ± 0.63
Q6 1.1 ± 0.3 1.3 ± 0.5 1.4 ± 0.5
Q7 4.3 ± 0.7 3.8 ± 0.8 3.8 ± 0.7
Q8 1.3± 0.5 1.4 ± 0.6 1.6 ± 0.8
Q9 4.3 ± 0.7 3.8 ± 0.7 3.4 ± 0.6
Q10 1.3 ± 0.6 1.3 ± 0.5 1.1 ± 0.3

TOTAL 81.4 ± 5.2 73.9 ± 6.4 70.8 ± 6.0

Table 12: Post-hoc analysis of between MOAm and other conditions for
the the SUS total score in user study 2 using Bonferroni.

metric comparison mean dif. std. dif. p-value

SUS MOAm
Ob ject Proxy 7.5 2.1 2.0×10−3

VV IR 10.8 2.1 1.5×10−5
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