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TextRSR: Enhanced Arbitrary-Shaped Scene Text
Representation via Robust Subspace Recovery
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Abstract—In recent years, scene text detection research has
increasingly focused on arbitrary-shaped texts, where text rep-
resentation is a fundamental problem. However, most existing
methods still struggle to separate adjacent or overlapping texts
due to ambiguous spatial positions of points or segmentation
masks. Besides, the time efficiency of the entire pipeline is often
neglected, resulting in sub-optimal inference speed. To tackle
these problems, we first propose a novel text representation
method based on robust subspace recovery, which robustly
represents complex text shapes by combining orthogonal basis
vectors learned from labeled text contours. These basis vectors
capture basis contour patterns with distinct information, enabling
clearer boundaries even in densely populated text scenarios.
Moreover, we propose a dynamic sparse assignment scheme for
positive samples that adaptively adjusts their weights during
training, which not only accelerates inference speed by elimi-
nating redundant predictions but also enhances feature learning
by providing sufficient supervision signals. Building on these
innovations, we present TextRSR, an accurate and efficient scene
text detection network. Extensive experiments on challenging
benchmarks demonstrate the superior accuracy and efficiency
of TextRSR compared to state-of-the-art methods. Particularly,
TextRSR achieves an F-measure of 88.5% at 37.8 frames per
second (FPS) for CTW1500 dataset and an F-measure of 89.1%
at 23.1 FPS for Total-Text dataset.

Index Terms—Scene text detection, arbitrary-shaped text rep-
resentation, robust subspace recovery, dynamic sparse assign-
ment
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Fig. 1. Detection results of different methods in dense text scenarios. Both the
segment mask-based method [5] and the Bezier point-based method [6] fail
when adjacent texts are close, as shown in (a) and (b). In contrast, our method
TextRSR accurately differentiates adjacent texts in such complex scenarios,
as illustrated in (c), with the ground truth provided in (d).

I. INTRODUCTION

CENE text detection is a widely researched topic in
the field of computer vision, with numerous downstream
applications, including image/video understanding [1], [2],
visual search [3], and autonomous driving [4]. However, it
remains a challenging task due to the complex geometric
layout of texts, perspective distortions from shooting angles,
and varying degrees of occlusion. Therefore, designing an
effective text representation is a problem worthy of research.
Arbitrary-shaped scene text representations can be cate-
gorized into two main paradigms. One is the segmentation-
based text representation which represents text shapes by
grouping segmentation results at the pixel level [5], [7]-[12] or
component level [13]-[15] through heuristic post-processing.
The other approach is regression-based text representation,
which models text shapes using contour points [16]-[19] or
parameterized methods [6], [20]-[23].

Although both types of text representations achieve
strong performance, they exhibit certain limitations. First,
segmentation-based text representation methods [5], [7]-[12]
may struggle with text-like background noise due to their
limited global perception. Second, regression-based text repre-
sentation methods [6], [24] may fail to accurately model highly
curved texts with perspective distortions due to limited control
points. Finally, both methods [5], [6] frequently have difficulty
separating adjacent or overlapping texts due to ambiguous
spatial positions of points or segmentation masks, as shown
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in Fig. 1.

Moreover, regression-based text representation methods of-
ten overlook the overall efficiency of the pipeline, often
resulting in sub-optimal inference performance. Based on how
positive samples are assigned, existing positive sample assign-
ment schemes adopted by regression-based text representation
methods can be categorized into three types: dense assignment
scheme [21], [22], [24], one-to-one assignment scheme [25]-
[27], and dual assignment scheme [23]. The dense assignment
schemes require the use of non-maximum suppression (NMS)
to reduce numerous redundant predictions, and the process
can be computationally intensive, particularly in dense text
scenarios involving predictions of arbitrary shapes. The one-to-
one assignment schemes adopt the set prediction mechanism
from DETR [28] to avoid NMS, but due to the lack of
sufficient supervision signals and positional priors, it typically
requires stacking multiple decoders for iterative text contour
refinement, resulting in a complex pipeline. The dual assign-
ment scheme [23] combines both dense assignment and sparse
assignment branches, in which the dense assignment branch
provides sufficient supervision signals for training, while the
sparse assignment branch accelerates inference speed. How-
ever, introducing the sparse branch also increases training
complexity.

To tackle these problems, firstly inspired by the recent
instance segmentation work [29], we propose a robust sub-
space recovery (RSR) method to robustly represent complex
text shapes. Compared with most previous text representa-
tions, it offers distinct advantages. 1) Unlike Bezier point-
based methods [6], [24], which require generating interme-
diate representations followed by discrete point regression
in image space—a process prone to noise from occlusion
that complicates distinguishing adjacent texts, our approach
directly predicts the coefficients of RSR in parameter space,
reducing noise susceptibility. 2) Besides, most parameterized
text representation methods [5], [20]-[22] model each text
instance independently. In contrast, our method models all text
instances across the entire training set collectively, considering
the shape relationships between different instances. 3) Our
method captures fundamental contour patterns with well-
differentiated information among patterns, allowing for clearer
boundaries even in densely populated text scenarios where
adjacent texts are close.

Our method RSR begins with constructing a text contour
matrix containing all text contours in the training set. Based
on robust subspace recovery [30], we utilize the projected
Riemannian subgradient method (PRSGM) [31] to compute
a robust M -dimensional subspace on the text contour matrix
to find a set of orthogonal basis vectors. We then perform a
sharing basis vectors conversion mechanism to reconstruct text
contours by linearly combining these orthogonal basis vectors,
as illustrated in Fig. 2.

Moreover, we propose a dynamic sparse assignment scheme
(DSAS) for positive samples. During training, the weights of
positive samples are adaptively adjusted to maintain a balance
between feature learning and duplicate prediction removal.
Specifically, we start with large weights for positive samples
in the early training stage to provide ample supervised signals,

Fig. 2. Tlustration of the robust subspace recover text representation. up, uz,
-+, u1s, and uye are the orthogonal basis vectors that capture basic contour
patterns with well-differentiated information. The text contour is approximated
as a linear combination of these orthogonal basis vectors, with fitted curves
shown progressively from left to right to demonstrate the effect of using an
increasing number of the basis vectors. The ground truth contour is depicted
in green.

enabling the network to learn feature more effectively. As
training progresses, we gradually decrease the weights of
positive samples to guide the network to reduce duplicate pre-
dictions, thereby decreasing the time of NMS during inference.
Building on the above innovations, we present TextRSR, an
accurate and efficient scene text detector. The main contribu-
tions of our work can be summarized as follows:

e We propose a text shape representation method named
RSR, which utilizes robust subspace recovery approach to
find a set of orthogonal basis vectors learned from labeled
text contours, representing the text shape by linearly
combining these orthogonal basis vectors.

o We introduce a dynamic sparse assignment scheme for
positive samples that adaptively adjusts their weights
during training, which simultaneously facilitates feature
learning by providing sufficient supervision signals and
accelerates inference speed by removing duplicate pre-
dictions.

o Extensive experiments are conducted on challenging
benchmarks, demonstrating the superior accuracy and
efficiency of our approach TextRSR compared to state-
of-the-art methods. Particularly, TextRSR achieves 88.5%
F-measure at 37.8 frames per second (FPS) and 89.1%
F-measure at 23.1 FPS for CTW1500 and Total-Text
datasets, respectively.

II. RELATED WORK

Current text representation methods can be roughly di-
vided into segmentation-based text representation methods
and regression-based text representation methods. Besides, we
introduce some positive sample assignment schemes adopted
by regression-based text representation methods.

A. Segmentation-based Text Representation

Segmentation-based text representation methods represent
text shapes by grouping segmentation results at the pixel or
component level through holistic post-processing.
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For pixel level methods, which can naturally represent
arbitrary shape text, Pixellink [7] first estimates the con-
nection relationships between pixels, subsequently extracting
text bounding boxes by distinguishing links associated with
different text entities. Tian et al. [8] conceptualizes each text
instance as a cluster and used a two-step clustering strategy
to segment dense text instances, ensuring that pixels within
the same text unit typically belonged to the same cluster.
TextField [9] learns a direction field that incorporates both the
text mask and positional information relative to text bound-
aries, ultimately linking adjacent pixels to form candidate text
regions. PSENet [10] predicts text instance kernels of varying
scales, and then utilized a progressive expansion strategy to
gradually enlarge these predefined kernels. DB [11] and DB++
[12] presents a differentiable binarization module that assigns
elevated thresholds to text boundaries.

For component level methods, which represent the text with
a set of text components, TextSnake [13] models text instances
as a sequence of overlapping circular regions, predicting the
text areas, centerlines, and various geometric attributes of
these regions to reconstruct the text. Seglink++ [14] proposes
instance-aware component grouping (ICG) method, which
detects text by utilizing attractive and repulsive links between
components to improve the separation of closely positioned
text instances, and employs a modified minimum spanning
tree algorithm for the final detection. Moreover, DRRG [32]
and ReLaText [33] further deduce the relationships between
local components using graph convolution networks.

However, these segmentation-based text representation
methods, constrained by a local perspective, lack a global
perception of the text, making it challenging to distinguish
adjacent or overlapping text instances. Furthermore, they are
often computationally intensive in post-processing, leading to
sub-optimal inference speed.

B. Regression-based Text Representation

Compared with segmentation-based text representation
methods, regression-based text representation methods regress
the geometric information of text shape and position, thus
avoiding intricate post-processing.

For horizontal and multi-oriented text, a simple rectangu-
lar or quadrilateral representation is generally sufficient. For
arbitrary-shaped text, some methods [16]-[19] directly regress
contour points in image space as text boundary and gradually
increase the number of points as required to detect complex
scenes.

Other approaches use parameterized curves or surfaces to
represent the text contour. For instance, TextRay [20] employs
Chebyshev polynomials under a polar coordinate system to
approximate the text contour. FCENet [21] introduces the
Fourier contour embedding (FCE) method, which approxi-
mates arbitrary-shaped text contours using compact Fourier
signature vectors. ABCNet [24] uses two Bezier curves to
represent the long edges of the text, thereby fitting the text
contour, while TPSNet [22] leverages thin plate splines (TPS)
to parameterize text contours using TPS fiducial points.

However, specific limitations are inherent in these methods.
TextRay may struggle to represent text contours compactly

and effectively due to inherent limitations in global geo-
metric modeling, particularly when the text shapes are non-
starconvex. FCENet may fail to capture partial corner pixels
for extremely long or curved text. Additionally, ABCNet
and TPSNet depend on intermediate representations, such
as fiducial points, while discrete point regression in image
space is susceptible to disruptions like occlusion or noise,
which makes distinguishing adjacent text challenging. Our
RSR approach addresses these challenges by predicting RSR
coefficients within a parameter space, which effectively cap-
tures fundamental contour patterns with well-differentiated
information. This capability enables the clear separation of
closely positioned text, resulting in more distinct boundaries
in text-dense scenarios.

Moreover, previous text representation methods tend to
overlook structural relationships among various text shapes,
limiting their ability to effectively model arbitrary-shaped
texts. To address this issue, LRANet [23] employs singular
value decomposition (SVD) to extract structural relationships
among text contours and reconstruct text shapes using a few
eigenvectors derived from labeled text contours. However, the
traditional ¢>-based SVD solution is highly susceptible to
outliers, which encompasses the ground-truth text boundary.
Unlike LRANet, our method utilizes RSR technique to extract
a set of orthogonal basis vectors from the text contour matrix
and reconstruct text shapes through a linear combination of
these orthogonal basis vectors.

C. Positive Sample Assignment Schemes

According to the allocation of positive samples, existing
positive sample assignment schemes adopted by regression-
based text representation methods can be divided into three
types: dense assignment scheme [21], [22], [24], one-to-one
assignment scheme [25], [27], and dual assignment scheme
[23].

Most anchor-free CNN-based methods adopt the dense
assignment schemes. For instance, [13], [21], [24] employ
the “center sampling” strategy, where the text center region
(TCR) is treated as the positive sample region. However, this
approach has limitations: the model struggles to effectively
capture interactions between the far-separated ends of long
text sequences. To address this issue, TPSNet [22] proposes
using Gaussian text center (GTC), where only predictions near
the center point are retained for assigning positive samples.
Despite these designs improvements, these models require
non-maximum suppression (NMS) to eliminate redundant
predictions. This process can be time-consuming, especially
in dense text scenarios with arbitrary-shaped predictions. To
address this problem, DETR-based [25], [27] methods adopt a
one-to-one assignment scheme, which eliminates the need for
NMS. However, these methods often require stacking multiple
decoders for iterative text contour refinement, leading to a
more complex pipeline.

On the other hand, LRANet [23] proposes a dual assignment
scheme that attempts to address these challenges by combining
a dense assignment branch to provide sufficient supervised
signals during training with a sparse assignment branch to
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Fig. 3. The pipeline of the proposed TextRSR. Given an input image, multi-scale FPN features are extracted and fed into the shared head. In the shared head,
the classification branch generates heatmaps for the text region (TR) and the dynamic sparse sampling region (DSSR), both of which are utilized to identify
positive samples. Meanwhile, the regression branch predicts the RSR coefficients, which are used to linearly combine the basis vectors. In the RSR decoder,
pixel-wise multiplication between the TR and DSSR predictions is performed to derive the final positive samples. The corresponding RSR coefficients for
these samples are then decoded to reconstruct the text shape based on the predefined orthogonal basis vectors.

accelerate inference speed. However, the introduction of the
sparse branch further increases training complexity.

To overcome the limitations of the above methods, we
propose a dynamic sparse assignment scheme for positive
samples. This approach adaptively adjusts the weights of
positive samples during training, thereby enhancing feature
learning while also accelerating inference speed by removing
duplicate predictions without increasing additional parameters.

III. ARBITRARY-SHAPED SCENE TEXT DETECTION VIA
ROBUST SUBSPACE RECOVERY

A. Overview

As illustrated in Fig. 3, following previous regression-based
text detection networks [21]—[23], our TextRSR model is built
on a compact one-stage fully convolutional architecture. It
consists of three primary components: a feature extraction
module, a detection head, and a RSR decoder for inference.
The feature extraction module employs ResNet50 with a
deformable convolutional network (DCN) as the backbone,
and incorporates a feature pyramid network (FPN) to ex-
tract multi-scale feature maps. The detection head has two
branches: one for classification and the other for regression.
The classification branch uses four 3 x 3 convolutional layers to
extract features, followed by two separate 3 x 3 convolutions
for predicting the text region (TR) and the dynamic sparse
sampling region (DSSR). The DSSR is the positive sample
region within our dynamic sparse assignment scheme. In the
regression branch, four 3 x 3 convolutional layers are used to
extract features, followed by a single 3 x 3 convolution for
predicting the RSR coefficients. In the RSR decoder, pixel-
wise multiplication is performed between the predictions from
TR and DSSR to obtain the final positive samples. The RSR
coefficients corresponding to these samples are then decoded

to reconstruct the text shape using orthogonal basis vectors,
as defined by Eq. (4).

B. Robust Subspace Recovery Text Representation

Most existing text shape representation methods struggle
to model arbitrary-shaped texts with compact layouts, partic-
ularly in dense text scenarios where adjacent texts are close
due to ambiguous spatial position of points or segment masks.
Furthermore, the interdependence of text contours motivates
us to apply robust subspace projection to effectively capture
contour patterns among the text contours. By capturing fun-
damental contour patterns with well-differentiated information
among patterns, our method can achieve clearer boundaries
even in densely populated text scenarios where adjacent texts
are close.

First, we apply cubic spline interpolation to the ground truth
text boundary, which consists of a variable number of vertices,
to resample them into a fixed number of N vertices. Second,
these resampled vertices are flattened into a sir%gle column
vector, represented as p = [x1,y1, - ,Xn,yn] € RZVXL
Then, a text contour matrix is constructed from these vectors,
defined as A = [p1, P2, ,pr] € R*V*L, where L denotes
the number of labeled text instances in the training set.

Third, we need to compute a M -dimensional subspace S on
the text contour matrix A. We notice that there is a recently
proposed method LRANet [23] using singular value decom-
position (SVD) to obtain a low-rank representation. However,
the traditional /5-based SVD solution is highly susceptible to
outliers, including ground-truth contours of challenging texts.
Therefore, we aim to robustly estimate the underlying low-
dimensional subspace in the presence of outliers, known as
robust subspace recovery (RSR) [30]. To achieve this, we
employ the projected Riemannian subgradient method [31] to
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Fig. 4. Visualization of the sixteen basis vectors for the ICDAR2019-ArT [34] dataset revealing distinct patterns. The first five basis vectors capture typical
contour patterns, while the remaining vectors focus on finer details of text shapes, leading to increasingly complex structures.

find a orthogonal column matrix U for the robust subspace S
by solving the following optimization problem:
min
UecO(2N,M)
where O(2N, M) := {U e R*V>*M|UTU =1,} denotes
the set of 2N x M orthogonal column matrices, and |||, ,
is the mixed /; »-norm defined for any matrix A as the sum
of the ¢5-norms of its rows.
Once the optimal U is computed by solving Eq. (1), the

text contour matrix A can be approximated by projecting it
onto the robust subspace S:

H(I—UUT)AHM, QY

A=UUTA=[p1,....pr] ~ A, 2)

where A is the projection of A onto the M -dimensional
subspace S and p; denotes the approximation of p;.

Next, we define the coefficient matrix C = UTA =
[c1,Co,...,cr] € RMXL allowing the matrix A to be
expressed as:

A =UC = [Ucy,.. .pr]. 3

In Eq. (3), each approximated text contour p; can be
represented as a linear combination of the orthonormal basis
vectors, as shown in the following equation:

.,UCL] = [f)l,...

lsi :Uci = [u17"'7ujw] Ci- (4)

These orthonormal basis vectors uy, us,...,up; can describe
basic contour patterns, as illustrated in Fig. 4.

Given any 2/N-dimensional text contour p, we can project
it onto the robust subspace S to obtain its approximation:

p = Uc, 4)
where the coefficient vector c is given by:
c=U'p. (6)

Thus, in the robust subspace S, a text contour p is
approximately represented by the A -dimensional vector c
obtained from Eq. (6). The approximation p of p can then
be reconstructed via Eq. (4).

C. Dynamic Sparse Assignment Scheme

We propose a dynamic sparse assignment scheme for pos-
itive samples that adaptively adjusts their weights during
training. This approach simultaneously enhances feature learn-
ing and accelerates inference speed by eliminating redundant
predictions.

Specifically, we construct a prediction-aware matrix S that
considers both classification and regression costs. Each ele-
ment of this matrix is defined as:

N-1
sij=1%[i € QIx(FL' (c:)) "% Y Hf)z(-") - pg")H , (1)
n=0

where s; ; represents the matching cost between the predicted
text contour of the ¢-th point and the ground-truth text contour
of the j-th instance. The indicator function 1> [i € ;] out-
puts 1 if point 7 lies within the text region 2; of the ground
truth; otherwise, it returns oo, ensuring that S; ; = oco. Here,
¢; denotes the predicted classification score for the i-th point.

The classification cost, denoted as F1./, is derived from the
focal loss [35]. It is given by:

FL/(2) = ~B(1 - )" log(2) + (1 - B)" log(1 — 2), (®)

where [ serves as a weight factor to address the imbalance
between positive and negative samples, while v is a focus-
ing parameter that down-weights the loss assigned to well-
classified (easy) examples and thus focuses the learning on
hard examples.

N-1 «
Finally, the term >~ Hf)l(-”) — pg-") H computes the regres-
=0

sion cost, which isnEalculated as the L1 distance between
the predicted and ground-truth text contours. The parameter
« balances the relative importance between classification and
regression costs.

Previous works [25], [27] typically formulate the selection
of positive samples as a bipartite matching problem, often
resolved using the Hungarian algorithm [36]. For simplicity,
our method directly selects the K positive samples with the
lowest matching costs based on s; ;.

To minimize the likelihood of duplicate predictions, we
assign dynamic soft labels to these selected positive samples.
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Assuming the network undergoes X training epochs, the
classification loss for each positive sample ¢ in the j-th epoch
is defined as:

1! = —w!log(c;) — (1 —w!)log(1 — ¢;), 9

where ¢; denotes the predicted classification score for the i-th
point. The weights w/ and (1 —w]) correspond to the positive
and negative contributions of this point during the j-th epoch,
respectively. The weight w] is dynamically defined as:

w =T x —8
E max(cy)’
) Tmin _ Tmax (10)
TI — Tmax N
T -1 X7

where T7 is a time-dependent variable assigned uniformly
across all samples in the j-th epoch. The parameters 7™#* and
T™n control the weights of the selected K positive sample
points in the initial and final epochs, respectively. We ensure
that the weights are positively correlated with the classification
scores, meaning that points with higher prediction scores have
a more significant impact on the positive signals.

Using ¢; directly as the weight can lead to instability
during training, especially for hard samples with much lower
predicted scores compared to easy samples. To address this, we
normalize the weights by taking the ratio of ¢; to the maximum
classification score, max{c}, ensuring that all sample weights
are scaled uniformly.

Adjusting 77 dynamically is crucial as it manages the
balance between feature learning and duplication removal at
different training stages. In the early phases of training, 77
is set to a higher value to provide ample positive supervision
signals for robust feature representation learning, allowing the
network to converge quickly. As training progresses, 77 is
gradually decreased, reducing the positive weights of these
points and enabling the network to effectively eliminate du-
plicate predictions.

D. Objective Function

In our TextRSR framework, the optimization objective of
the network is formulated as:

‘C:‘Ccls'i_ﬁrega (11)

where L and L,.4 are the losses for the classification branch
and the regression branch, respectively.

The classification loss consists of the text region loss Lrr
and the dynamic sparse sampling region loss Lpgsr:

Leas =Lrr+ Lpssr, (12)

where L7 and Lpgsr are the cross-entropy loss and focal
loss, respectively. To solve the sample imbalance problem,
OHEM [37] is adopted for Lrg.

Our regression loss is defined as:

Lreg =Y 1[i € DSSRl; (Pi,pi) . (13)
where the indicator function 1 [¢ € DSSR] outputs 1 if point
1 lies within the dynamic sparse sampling region (DSSR);
otherwise, it returns 0. [; denotes the smooth-L1 loss.

IV. EXPERIMENTS

A. Datasets and Settings

1) Datasets: In this work, we follow [22] and use
SynthText-150K for pre-training our model. We evaluate the
performance of our model on four datasets: CTW 1500, Total-
Text, ICDAR2019-ArT, and ICDAR2015, reporting results
both with and without pre-training.

o SynthText-150K [24] is a large-scale synthetic text im-
age dataset, containing nearly 150,000 images that consist
of both straight and curved texts.

o CTW1500 [38] is a natural scene text detection data set
that pays special attention to curved text. It contains 1000
training images and 500 test images.

« Total-Text [39] is a comprehensive dataset, especially for
arbitrarily shaped text. It contains 1255 training images
and 300 testing images. Instances of text in images come
in many different orientations, such as horizontal, multi-
directional, and curved.Text areas are annotated by a non-
fixed number of polygons.

o ICDAR2019-ArT [34] is a complex large-scale multi-
lingual arbitrary shape text detection dataset. It includes
5,603 images for training and 4,563 for testing. The text
regions in this dataset are annotated using polygons with
an adaptive number of key points, providing a flexible
representation of the text boundaries.

o ICDAR2015 [40] is an incidental scene text dataset
which contains 1000 training images and 500 test images.
Text instances in the images appear in random scale,
orientation, location, viewpoint, and blurring. The anno-
tations are in the form of quadrilateral bounding-boxes
represented by 8 coordinates of four clockwise corners.

2) Implementation Details: We implement our TextRSR
model based on MMOCR [41] with PyTorch library [42]. The
backbone network is ResNet50, pre-trained on ImageNet, with
DCN applied in stages 2, 3, and 4, followed by FPN. The text
scale ranges for P3, P4, and P5 in the FPN are set to [0, 0.25],
[0.2,0.65], and [0.55,1] of the image size, respectively. The
dimension M of the robust subspace is set to 16, while the
sparse sampling number K in the dynamic sparse assignment
scheme is 3. Besides, 7™2* and 7™ are set to 0.8 and 0.2,
respectively. In Eq. (8), 5 and « are set to 0.25 and 2.0,
respectively. When training from scratch, stochastic gradient
descent (SGD) is used as the optimizer, with an initial learning
rate of 0.001, weight decay of 0.0005, and momentum of
0.9. Each dataset is trained independently using its respective
training set. The batch size is 8, and the models are trained for
500 epochs. To ensure comprehensive comparisons, we pre-
train the model on SynthText-150K for 10 epochs, followed
by fine-tuning for 500 epochs on all datasets with an initial
learning rate of 0.002. Data augmentation techniques include
random rotation, scaling, flipping, and cropping.

During testing, the shorter sides of the test images are
resized to 800, 1000, 1600, and 1200 for CTW1500, Total-
Text, ICDAR2019-ArT, and ICDAR2015, respectively, while
maintaining the original aspect ratio. All experiments are
conducted on an NVIDIA RTX 3090 GPU. In the following
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TABLE I
PERFORMANCE GAINS OF RSR AND DSAS ON CURVE TEXTS.

Dataset | Method | Recall Precision F-measure
Baseline 85.1 79.5 82.2
RSR 87.9 81.2 84.4
CTWIS00 | psR+DSAS | 87.3  86.2 86.8
Baseline 86.2 83.3 84.7
Total-Text RSR 88.3 86.3 87.3
Ol 1eXt | RSR+DSAS | 90.1  86.3 88.2

TABLE II

PERFORMANCE COMPARISON OF THE SAME NETWORK USING DIFFERENT

TEXT REPRESENTATIONS ON CTW1500.

TABLE IV
PERFORMANCE OF TEXTRSR WITH DIFFERENT SUBSPACE DIMENSIONS
ON CTW 1500 AND TOTAL-TEXT.

Di | CTW1500 | Total-Text
im
| R P F | R P F
14 86.7 86.1 86.4 85.6 89.5 87.5
16 87.3 86.2 86.8 90.1 86.3 88.2
18 85.5 87.3 86.4 86.2 89.8 88.0
TABLE V

PERFORMANCE OF TEXTRSR WITH DIFFERENT NUMBER OF DYNAMIC
SPARSE SAMPLES ON TOTAL-TEXT.

K | R P F FPS
5 86.6 89.8 88.2 21.4
3 90.1 86.3 88.2 23.1
1 84.1 90.4 87.1 23.8

Representation Dim | R P F

Contour points 28 84.4 82.6 83.5

Bezier points 16 83.4 84.7 84.1
RSR 14 86.7 86.1 86.4
RSR 16 87.3 86.2 86.8

sections, we omit % for simplicity in the recall (R), precision
(P), and F-measure (F) results.

B. Ablation Study

In this section, to validate the proposed method RSR and
DSAS in our TextRSR, we conduct ablation studies on both
CTW1500 and Total-Text datasets without pre-training on
SynthText-150K.

1) Effectiveness of RSR and DSAS: Table 1 shows the
results of using RSR and DSAS over the baseline model
on CTWI1500 and Total-Text datasets. The baseline model is
derived from the TPSNet model [22] by removing the TPS text
representation method. In place of this, the model represents
the text shape by directly regressing 14 contour points and
employs the popular text center region (TCR) [13], [21] as the
positive sample assignment scheme. The results indicate that
replacing contour points with RSR to represent text shapes
improves F-measure scores by 2.2 and 2.6 on CTWI1500
and Total-Text, respectively. When both RSR and DSAS are
applied, F-measure scores further increase by 4.6 and 3.7 on
CTW1500 and Total-Text, respectively.

2) Different Text Representation Methods: To further val-
idate our proposed text representation method, RSR, we in-
vestigate the effects of different text representations within
the TextRSR network structure. As shown in Table II, our
RSR outperforms both contour points and Bezier points
representations by 3.3 and 2.7 in F-measure, respectively.
This improvement is primarily due to our approach RSR,

TABLE III
PERFORMANCE OF TEXTRSR WITH DIFFERENT POSITIVE SAMPLE
ASSIGNMENT SCHEMES ON TOTAL-TEXT.

which captures fundamental contour patterns with distinct
information and predicts the coefficients of RSR in parameter
space. In contrast, the other two methods regress discrete
points in the image space, making them more susceptible to
noise, such as occlusion, which makes it challenging to clearly
distinguish adjacent text. Moreover, our RSR still surpasses the
other two methods by at least 2.3 in F-measure, with a lower
representation dimension 14.

3) Different Positive Sample Assignment Schemes: To
further examine our proposed positive sample assignment
scheme, DSAS, we conduct comparisons with dense as-
signment scheme, one-to-one assignment scheme, and dual
assignment scheme. To ensure fairness in comparison, we
use the TCR dense positive sample assignment scheme from
TPSNet [22] and the one-to-one assignment scheme from
DETR [28] as baselines. Besides, we compare with the recent
dual assignment technique [23]. As shown in Table III, our
dynamic sparse assignment scheme achieves a faster inference
speed (23.1 vs. 15.1), attributed to a significant reduction in
duplicate predictions, while also delivering a 3.9 improvement
in F-measure over the dense assignment. Additionally, when
compared to the one-to-one assignment, our method shows
a 1.0 increase in F-measure, while preserving high inference
speed. Moreover, compared to the dual assignment scheme,
our method achieves improvements of 0.2 in F-measure and
0.7 in FPS. These results indicate that our approach strikes
a good balance between effective representation learning and
high inference speed.

4) Dimension of Robust Subspace: To verify the gener-
alization ability of the robust subspace dimension, i.e., M,

TABLE VI _
F-MEASURE OF TEXTRSR WITH DIFFERENT 77"%% AND T"™"™ VALUES
ON TOTALTEXT.

Assignment Scheme | R P F FPS
Dense [22] 84.9 83.7 84.3 15.1
One to one [28] 86.1 88.4 87.2 23.5
Dual [23] 86.6 89.3 88.0 22.4
DSAS 90.1 86.3 88.2 23.1

max
N‘ 0.9 0.8 0.7
0.3 87.5 87.9 87.3
0.2 87.5 88.2 87.7
0.1 87.9 87.6 87.5
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TABLE VII
COMPARISONS WITH STATE-OF-THE-ART METHODS ON CTW 1500 AND TOTAL-TEXT. EXT DENOTES USING EXTRA DATA TO PRE-TRAIN, AND SYN,
MLT, ART, AND MIXT REFER TO THE FOLLOWING DATASETS: SYNTHTEXT [43], ICDAR2017-MLT [44], ICDAR2019-ART [34], AND A MIXED
DATASET COMPRISING SYNTHCURVE [24], COCO-TEXT [45], AND ICDAR2019-MLT [46], RESPECTIVELY. §DENOTES SEGMENTATION-BASED TEXT
REPRESENTATION METHODS, AND fDENOTES REGRESSION-BASED TEXT REPRESENTATION METHODS.

Method Paper Ext | CTW1500 | Total-Text
‘ Recall  Precision F-measure FPS ‘ Recall  Precision  F-measure FPS
TextSnake§ [13] ECCV’18 Syn 85.3 67.9 75.6 - 74.5 82.7 78.4 -
SegLink++§ [14] PR’19 Syn 79.8 82.8 81.3 - 80.9 82.1 81.5 -
TextField§ [9] TIP’19 Syn 79.8 83.0 81.4 6.0 79.9 81.2 80.6 6.0
MSRS§ [47] IJCAT'19 Syn 78.3 85.0 81.5 4.3 74.8 83.8 79.0 4.3
PSENet-1s§ [10] CVPR’19 MLT 79.7 84.8 82.2 3.9 78.0 84.0 80.9 3.9
ATRRS [18] CVPR’19 - 80.2 80.1 80.1 10.0 76.2 80.9 78.5 -
CRAFTS [15] CVPR’19 Syn 81.1 86.0 83.5 - 79.9 87.6 83.6 -
PANS [48] ICCV’19 Syn 81.2 86.4 83.7 39.8 81.0 89.3 85.0 39.6
DRRGS [32] CVPR’20 MLT 83.0 85.9 84.5 - 84.9 86.5 85.7 -
DBS§ [11] AAAT 20 Syn 80.2 86.9 83.4 22.0 82.5 87.1 84.7 32.0
ReLaText§ [33] PR’21 Syn 83.3 86.2 84.8 10.6 83.1 84.8 84.0 3.2
DB++§ [12] TPAMI’ 22 Syn 82.8 87.9 85.3 26.0 83.2 88.9 86.0 28.0
TextDCT§ [5] TMM’22 Syn 85.3 85.0 85.1 17.2 82.7 87.2 84.9 15.1
Wang et al.§ [49] TIP 23 - 82.5 85.3 83.9 25.1 79.9 88.7 84.1 24.3
LOMOY [50] CVPR’19 Syn 69.6 89.2 78.4 4.4 75.7 86.6 81.6 4.4
TextRayt [20] MM’ 20 ArT 80.4 82.8 81.6 - 77.9 83.5 80.6 -
ContourNett [51] CVPR’20 - 84.1 83.7 83.9 4.5 83.9 86.9 85.4 3.8
OPMP+ [52] TMM’21 - 80.8 85.1 82.9 1.4 82.7 87.6 85.1 1.4
Dai et al.t [53] TMM’21 - 80.4 86.2 83.2 0.6 81.2 85.4 83.2 0.7
PCRT [16] CVPR’21 MLT 82.3 87.2 84.7 - 82.0 88.5 85.2 -
FCENett [21] CVPR’21 - 83.4 87.6 85.5 - 82.5 89.3 85.8 -
ABCNet V21 [6] TPAMI’21  MixT 83.8 85.6 84.7 - 84.1 89.2 87.0 -
TextBPN [19] ICCV’21 Syn 81.4 87.8 84.5 12.1 84.6 90.2 87.3 -
TPSNett [22] MM’22 Syn 85.1 87.7 86.4 17.9 86.8 89.5 88.1 14.3
CT-Netf [27] TCSVT’23 Syn 83.8 88.5 86.1 11.2 85.0 90.8 87.8 10.1
LRANet7 [23] AAAT 24 Syn 85.5 89.4 87.4 37.2 87.8 90.3 89.0 22.1
TextRSR+ Ours - 87.3 86.2 86.8 37.8 90.1 86.3 88.2 23.1
TextRSRT Ours Syn 87.5 89.5 88.5 37.8 86.5 91.7 89.1 23.1

we conduct experiments on both CTW1500 and Total-Text
datasets. The results are listed in Table IV. We can see that as
M increases to 16, the F-measure improves by 0.4 and 0.7 in
CTW1500 and Total-Text, respectively. However, when M is
further increased to 18, the F-measure decreases by 0.4 and 0.2
in CTW1500 and Total-Text, respectively. These observations
suggest that the robust subspace dimension M generalizes
well across different datasets, with M = 16 yielding optimal
performance.

5) Different Number of Dynamic Sparse Sampling: Here
we further investigate the impact of the dynamic sparse
sampling number K on model performance, as presented
in Table V. When K = 3, the model achieves the most
balanced performance, with an F-measure of 88.2 and an FPS
of 23.1, indicating an effective trade-off between accuracy and
inference speed. Increasing K to 5 does not yield any further
improvement in the F-measure, while the FPS decreases to
21.4. This suggests that setting K = 3 is sufficient to provide
adequate supervised signals for feature learning. Conversely,
setting K = 1 increases precision to 90.4 and maximizes FPS
at 23.8, but lowers the F-measure to 87.1 due to decreased
recall.

6) T™ and T™": These two parameters control the
weights of positive sample points in the first and last epoch, re-
spectively, during the training process. As shown in Table VI,
the highest F-measure of 88.2 is achieved when 7™* = 0.8

and T™" = (0.2, suggesting this combination offers an optimal
balance for accurate model performance. When 7™" is set to
0.1, the F-measure peaks at 87.9 when 7™ = 0.9, but it
decreases slightly to 87.6 and 87.5 for 7™ = 0.8 and 0.7,
respectively. Similarly, at 7™" = 0.3, the F-measure ranges
from 87.5 at T™* = 0.9 to 87.3 at T™* = (.7, showing a
gradual decline. Overall, the combination of 7™* = (.8 and
T™in = (.2 stands out as the most effective, providing the
highest F-measure of 88.2, highlighting its potential as the
optimal setting for the best model performance on the Total-
Text dataset.

C. Comparison with State-of-the-Art Methods

We compare our TextRSR with previous works on three
benchmarks, including two benchmarks for curved texts and
one benchmark for large-scale multi-lingual arbitrary shape
texts. Some qualitative results are visualized in Fig. 5, which
demonstrates the effectiveness of our TextRSR on long, curve,
adjacent, and dense texts. For a fair comparison, we only
record our model’s single-scale testing results on all datasets.
Moreover, for text spotting methods [6], [22], [54], [55], we
only show the detection results without recognition module.

1) Evaluation on Long Curved Text Benchmark: As shown
in Table VII, we first compare our results with state-of-the-art
methods on the long curved text dataset CTW1500. TextRSR
achieves recall, precision, and F-measure scores of 87.5, 89.5,
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Fig. 5. Examples of text detection results obtained with the proposed TextRSR approach on benchmark datasets.

TABLE VIIT
COMPARISON WITH OTHER PARAMETERIZED TEXT SHAPE METHODS ON
CTW1500. IoU RESULTS FOR OTHER METHODS ARE SOURCED FROM

[23].
Method Dim ToU
Chebyshev [20] 44 83.6
DCT [5] 32 88.5
Fourier [21] 22 91.5
Bezier [24] 16 97.6
TPS [22] 22 97.9
LRA [23] 14 98.0
RSR 16 98.3

and 88.5, respectively, outperforming all comparison meth-
ods in performance. Some qualitative results on CTW1500
dataset are depicted in Fig. 5(a). Notably, even without pre-
training, TextRSR still surpasses all comparison methods in
F-measure. Besides, thanks to our concise network architec-
ture and the proposed positive sample assignment scheme
(DSAS), TextRSR achieves a high inference speed of 37.8
FPS, which indicates that our model is capable of real-time
text detection. Furthermore, as shown in Table VIII, compared
to other parameterized text shape representation methods, our
approach achieves the highest IoU of 98.3, while maintaining
a competitive dimension for the representation.

TABLE IX
COMPARISON WITH STATE-OF-THE-ART METHODS ON ICDAR2019-ART.
EXT DENOTES USING EXTRA DATA TO PRE-TRAIN.

Method Paper Ext | R P F

PSENet-1s [56] CVPR’19 v 52.2 75.9 61.9
CRAFT [15] CVPR’19 v 68.9 7.3 72.9
PAN [48] ICCV’19 v 79.4 61.1 69.1
TextRay [20] MM’20 v 58.6 76.0 66.2
ContourNet [51] CVPR’20 62.1 73.2 67.2
PCR [16] CVPR’21 v 66.1 84.0 74.0
TPSNet [22] MM’22 70.9 81.0 75.6
TPSNet [22] MM’22 v 73.3 84.3 784
EMA [57] TIP’22 v 68.7 80.8 74.3
Wang et al. [49] TIP’23 v 60.5 78.5 68.4
TextRSR Ours 71.1 82.9 76.6
TextRSR Ours v 716 853 778

2) Evaluation on Curved Text Benchmark: As shown in
Table VII, we first compare our results with state-of-the-
art methods on the curved text dataset Total-Text. TextRSR
achieves recall, precision, and F-measure scores of 86.5, 91.7,
and 89.1, respectively, outperforming all comparison methods
in performance. Qualitative results on the Total-Text dataset
are presented in Fig. 5(b). Compared to parameterized text
representation methods [5], [20]-[23] , our TextRSR outper-
forms the best performing method, LRANet [23] by 0.1 in
F-measure and 1.0 in FPS. Moreover, TextRSR significantly
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Fig. 6. Qualitative comparison with previous methods on selected adjacent text samples from the CTW1500 dataset. Ground truth is shown in column (a),
marked in red. Segmentation-based text representation methods [10], [13], [48], [58] are presented in columns (b)—(f), highlighted in yellow, while regression-
based text representation methods [6], [21], [22] are shown in columns (g)—(j), marked in green.

outperforms segmentation-based text representation methods
[9]-[12], [19], [32], [48] by at least 3.1 in F-measure.

3) Evaluation on Large-Scale Multi-Lingual Arbitrary-
Shaped Text Benchmark: To demonstrate the generalization
ability of our proposed method, we evaluate our model on the
ICDAR2019-ArT dataset, which contains numerous multilin-
gual curved text instances from complex scenes. As shown
in Table IX, even without pre-training, TextRSR achieves
recall, precision, and F-measure scores of 71.1, 82.9, and
76.6, respectively. These results outperform most pre-trained
methods in terms of F-measure, highlighting TextRSR’s adap-
tive ability to large-scale datasets. However, with pre-training,
there remains a gap in the F-measure compared to the previous
best method TPSNet [22] (77.8 vs. 78.4). We attribute this
discrepancy to the domain mismatch between the basis vectors
learned from the real-world ICDAR2019-ArT dataset and
those from the synthetic SynthText-150K dataset. Specifically,
the contour patterns captured by these basis vectors exhibit
differences across domains, which may account for the rel-
atively modest performance gain from pre-training compared
to TPSNet [22] (1.2 vs. 2.8). Some qualitative results on the
ICDAR2019-ArT dataset are illustrated in Fig. 5(c).

4) Visual Comparison: As shown in the Fig. 6, we visualize
both segmentation-based [10], [13], [48], [58] and regression-
based text representation methods [21], [22] on the adjacent
text samples from CTW1500 test dataset using MMOCR [41].
Note that most models for Total-Text or ICDAR2019-ArT
have not been released by MMOCR, and the visual results
for ABCNet V2 [6] are reproduced by AdelaiDet [59].

The first row depicts dense text scenarios where adjacent
texts are extremely close, even overlapping. In contrast to all
other text representation methods, which struggle with text
adhesion (also shown in the last row), our TextRSR effectively
distinguishes adjacent texts, even in such complex scenarios.

This is primarily because our method RSR captures funda-
mental contour patterns with well-differentiated information
across these patterns.

Moreover, when texts exhibit highly complex shapes in a
compact layout, as shown in the middle row, our TextRSR
still performs well. This is mainly due to our method’s ability
to model all text instance shapes across the entire training set
collectively, accounting for the shape relationships between
different instances.

D. TextRSR for Scene Texts in Quadrilateral Formats

To evaluate the applicability of our method to texts in
quadrilateral annotations, we compare with previous works on
ICDAR2015. As shown in Table X, our method, pre-trained
on SynthText-150K, achieves an F-measure of 88.7, surpass-
ing the state-of-the-art methods [22], [27] by 0.1. Without
pre-training, our method still outperforms ContourNet [51],
achieving an F-measure of 87.5 compared to 86.9. Besides,
the visualization results shown in Fig. 5(d) demonstrate the
effectiveness of our method in handling texts in quadrilateral
formats.

E. TextRSR with Swin Transformer as Backbone

We conduct experiments by replacing the original ResNet50
backbone with a more advanced Swin Transformer-T model.
As illustrated in Table XI, TextRSR using the Swin
Transformer-T backbone achieves consistent performance im-
provements on both CTW1500 and Total-Text datasets. Specif-
ically, with SynthText-150K pretraining, the F-measure on
CTW1500 improves from 88.5 to 88.8, and on Total-Text
improves from 89.1 to 89.5. These results indicate that Tex-
tRSR is compatible with Transformer-based architectures and
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TABLE X
COMPARISONS WITH STATE-OF-THE-ART WORKS ON ICDAR2015.

Method Paper Ext | R P F  FPS
ATRRS [18] CVPR’19 - 86.0 892 87.6 -
PSENet-1s§ [14] CVPR’19 MLT | 845 869 85.7 1.6
CRAFTS [15] CVPR’19 Syn | 843 89.8 869 8.6

PANS [48] ICCV’19 Syn | 819 840 829 26.1
DRRGS [32] CVPR’20 MLT | 84.7 88.5 86.6 -
TextMountain§ [60] PR’21 Syn | 84.1 873 857 104
TextDCTS [5] TMM’22 Syn | 84.8 889 86.8 75
DBNet++§ [12] TPAMI’22  Syn | 839 909 873 10.0
Wang et al. [49] TIP 23 - 82,7 89.8 86.1 12.1
CBNet§ [61] 1ICVv’24 MLT | 854 91.0 88.1 -
SPCNett [62] AAAI'l9 MLT | 85.8 88.7 872 -
LOMOT [50] CVPR’19 Syn | 835 91.3 872 34
ContourNet{ [51] CVPR’20 - 86.1 87.6 869 3.5
Boundaryf [63] MM’20 Syn | 822 88.1 850 -

R-Net} [64] TMM’21 Syn | 82.8 88.7 856 214
FCENett [21] CVPR’21 - 82.6 90.1 86.2 -
MOSTT [65] CVPR’21 Syn | 87.0 89.1 882 10.0
TPSNett [22] MM’22 Syn | 86.6 90.7 88.6 11.6
EMAT [57] TIP’22 Syn | 824 894 858 21.6
CT-Netf [27] TCSVT’23  Syn | 864 909 88.6 6.5
TextRSR+ Ours - 86.8 88.2 875 16.6
TextRSRT Ours Syn | 87.3 90.1 88.7 16.6
TABLE XI

PERFORMANCE OF OUR TEXTRSR WITH DIFFERENT BACKBONES ON
CTW1500 AND TOTAL-TEXT.

Method ~ Backbone  Ext ‘ CTW1500 ‘ Total-Text

| R P F FPS | R P F  FPS
TextRSR Res50 - 87.3 86.2 86.8 37.8 | 90.1 86.3 88.2 23.1
TextRSR Res50 Syn 87.5 89.5 88.5 37.8 86.5 91.7 89.1 23.1
TextRSR Swin-T - 87.9 86.5 87.2 32.6 89.1 87.9 88.5 19.4

TextRSR Swin-T Syn | 89.5 88.1 888 32.6 88.1 90.9 89.5 194

benefits from their stronger feature extraction capabilities,
although with a slight decrease in inference speed.

F. RSR vs. SVD

There is a recent parameterized text representation method
LRANet [23]. It utilizes singular value decomposition (SVD)
to extract eigenvectors and represents text contours through a
linear combination of these eigenvectors. However, traditional
£o-based SVD technique may suffer from a lack of robustness
when confronted with outliers.

To fairly evaluate the robustness of our proposed RSR
method against traditional SVD in the presence of training
outliers (TOs), we replace RSR with SVD within our TextRSR
framework, in which the new structure is named LRANet*.
Since existing scene text datasets contain very few outliers,
we design an algorithm to inject synthetic outliers into the
CTW1500 training set. Specifically, for each image, we ran-
domly select 0 to 3 text instances, and for each selected
instance, randomly replace 0 to 3 contour points with nearest
neighboring points from adjacent instances using KD-Tree
algorithm [66]. The results of these two parameterized text
representation methods are presented in Table XII.

It can be observed that TextRSR consistently outperforms
LRANet* across both detection performance (F-measure) and
contour reconstruction accuracy (IoU), under conditions with

TABLE XII
PERFORMANCE COMPARISON BETWEEN LRANET* AND TEXTRSR ON
CWT1500. TOS REFERS TO GENERATED TRAINING OUTLIERS.

Method Dim  TOs R P F ToU
14 v 84.2 85.8 85.0 96.1
LRANet* 16 v 85.4 86.4 85.9 97.3
16 - 85.2 87.8 86.5 98.2
14 v 87.0 85.2 86.1 97.0
TextRSR 16 v 87.4 85.6 86.5 97.8
16 - 87.3 86.2 86.8 98.3

and without training outliers. At the same dimension of 16,
TextRSR achieves an improvement of 0.3 in F-measure and 0.1
in IoU over LRANet* without training outliers. When training
outliers are introduced, the performance gap further widens,
in which TextRSR surpasses LRANet* by 0.6 in F-measure
and 0.5 in IoU. Moreover, when the dimension is reduced
to 14, the advantage becomes more evident, with TextRSR
outperforming LRANet* by 1.1 in F-measure and 0.9 in IoU.

Notably, TextRSR maintains stable performance regardless
of the presence of training outliers, with a slight difference
in F-measure (0.3) and IoU (0.5) at the dimension of 16. In
contrast, LRANet* exhibits larger performance degradation
when training outliers are introduced, with a drop of 1.4
in F-measure and 0.9 in IoU at the same dimension. This
performance gap can be attributed to RSR’s robust subspace
learning mechanism, which effectively suppresses the influ-
ence of outlier points during basis vector computation, whereas
SVD-based decomposition tends to overfit noisy annotations
due to its sensitivity to outliers.

Their visual results across various text scenarios are illus-
trated in Fig. 7, including adjacent text (column 1), occluded
text (column 2), multi-oriented text (column 3), and curved
text (columns 4 and 5). It is demonstrated that TextRSR is
superior to LRANet* in the presence of training outliers.

G. Limitations

Based on the experimental results, our TextRSR demon-
strates robust performance across various challenging scenar-
ios, especially in densely populated scenes with closely spaced
adjacent text. However, certain limitations persist, particularly
in cases involving low-contrast texts and object-like texts, as
illustrated in Fig. 8. These scenarios remain challenging, not
only for our method but also for the state-of-the-art methods
[6], [10], [13], [16], [21], [22], [48], [58].

V. CONCLUSION

In this paper, we have proposed TextRSR, an accurate and
efficient detector for arbitrary-shaped scene text. A novel RSR
text representation has been introduced to enhance arbitrary-
shaped text representation by leveraging a robust subspace
recovery approach. This method learns a set of orthogonal
basis vectors from labeled text contours, capturing funda-
mental contour patterns while maintaining well-differentiated
information among them. By representing text shapes through
linear combinations of these orthogonal basis vectors, Tex-
tRSR enables clearer boundaries in densely populated text
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Fig. 7. Qualitative comparisons on challenging samples from the CTW1500 dataset. The top and bottom rows show the detection results of LRANet* and

our TextRSR, respectively.

(b)

Fig. 8. Failure cases, in which red contours are ground truths while green
contours are predicted results. (a) Low-contrast texts. (b) Object-like texts.

scenarios where adjacent texts are close. Furthermore, we
have presented a dynamic sparse assignment scheme for
positive samples, which adaptively adjusts their weights during
training. This scheme not only enhances feature learning by
providing sufficient supervision signals but also accelerates
inference speed by reducing redundant predictions. Extensive
experiments conducted on several challenging benchmarks
have demonstrated the superior accuracy and efficiency of Tex-
tRSR compared to state-of-the-art methods. Given its proven
effectiveness and efficiency, we intend to extend TextRSR to
scene text spotting in future work.
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