
Fov-GS: Foveated 3D Gaussian Splatting for Dynamic Scenes

Runze Fan, Jian Wu, Xuehuai Shi, Lizhi Zhao, Qixiang Ma, and Lili Wang

M
S-G

S
D
-G
S

O
urs

G
T

Ours

GT

Fig. 1: Left: Comparison of our foveated 3D Gaussian splatting (upper-right) and the ground truth (GT, lower-left). Right: As
illustrated in the close-ups of the images of both the foveal region (yellow) and periphery regions (blue and green), compared with
D-GS [1] and MS-GS [2], our results are closer to GT, and preserve better visual details in foveal region and salient region.

Abstract—Rendering quality and performance greatly affect the user’s immersion in VR experiences. 3D Gaussian Splatting-based
methods can achieve photo-realistic rendering with speeds of over 100 fps in static scenes, but the speed drops below 10 fps in
monocular dynamic scenes. Foveated rendering provides a possible solution to accelerate rendering without compromising visual
perceptual quality. However, 3DGS and foveated rendering are not compatible. In this paper, we propose Fov-GS, a foveated
3D Gaussian splatting method for rendering dynamic scenes in real time. We introduce a 3D Gaussian forest representation that
represents the scene as a forest. To construct the 3D Gaussian forest, we propose a 3D Gaussian forest initialization method
based on dynamic-static separation. Subsequently, we propose a 3D Gaussian forest optimization method based on deformation
field and Gaussian decomposition to optimize the forest and deformation field. To achieve real-time dynamic scene rendering, we
present a 3D Gaussian forest rendering method based on HVS models. Experiments demonstrate that our method not only achieves
higher rendering quality in the foveal and salient regions compared to the SOTA methods but also dramatically improves rendering
performance, achieving up to 11.33X speedup. We also conducted a user study, and the results prove that the perceptual quality of
our method has a high visual similarity with the ground truth.

Index Terms—3D Gaussian, Dynamic Scene, Foveated Rendering, Dynamic-Static Separation, HVS models.

1 INTRODUCTION

Virtual Reality (VR) is being increasingly utilized across diverse
fields, including entertainment, culture, and manufacturing. User im-
mersion in VR experiences is mainly influenced by two factors: ren-
dering quality and speed. 3D Gaussian Splatting (3DGS) [3] achieves
photo-realistic rendering with speeds of over 100 fps for static scenes.
D-GS [1] extends static 3DGS to monocular dynamic scenes, but the
rendering performance is inefficient, with frame rates dropping below
10 fps in complex scenes with millions of Gaussians.

One possible solution to improve rendering performance is to re-
duce the number of Gaussians needed for deformation and rendering.
Simply ignoring the Gaussians can cause missing parts, as the origi-
nal 3D Gaussian representation doesn’t encode the signal of different
frequencies at different Gaussians[2]. Foveated rendering generates
images of varying quality for different visual perception regions based
on the characteristics of the human visual system (HVS), providing an

• Lili Wang is with State Key Laboratory of Virtual Reality Technology and
Systems, Beihang University, Beijing, China; Peng Cheng Laboratory,
Shengzhen, China. Lili Wang is the corresponding author. E-mail:
wanglily@buaa.edu.cn.

• Runze Fan, Jian Wu, Lizhi Zhao, and Qixiang Ma is with State Key
Laboratory of Virtual Reality Technology and Systems, Beihang
University, Beijing, China. E-mail: by2106131@buaa.edu.cn,
lanayawj@buaa.edu.cn, lizhizhao@buaa.edu.cn,
sycamore ma@outlook.com.

• Xuehuai Shi is with Nanjing University of Posts and Telecommunications.
E-mail: xuehuai@njupt.edu.cn.

Manuscript received 17 September 2024; revised 20 December 2024;
accepted xx xxx. 201x. Date of Publication xx xxx. 201x; date of current
version xx xxx. 201x. Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

idea for reducing the number of Gaussians. While foveated render-
ing can not be adapted to the 3DGS pipeline directly. This is because
foveated rendering is processed in 2D screen space, whereas Gaus-
sians are distributed in 3D space. Moreover, for dynamic scenes, D-
GS predicts deformations for all Gaussians in the scene, which is often
unnecessary, as most objects in real scenes are static and only a few
are dynamic. Thus, to adapt foveated rendering to the 3DGS pipeline
and achieve photo-realistic and real-time rendering for dynamic scenes
in VR applications, two challenges must be addressed: 1) Develop a
new Gaussian-based scene representation that supports foveated ren-
dering, enabling efficient dynamic scene representation and rendering;
2) Determine how to perform rendering based on this representation in
a way that aligns with the visual perception of the HVS.

In this paper, we propose Fov-GS, a foveated 3D Gaussian splatting
method for rendering the dynamic scenes in real time. Our method
takes the monocular videos as inputs, and synthesizes VR binocular
real-time foveated images. We introduce a 3D Gaussian forest to rep-
resent the scene. To achieve foveated rendering, each tree within this
forest has the same layers, with layers determined by the HVS models.
Different layers correspond to different levels of detail (LOD) for the
scene. To further accelerate rendering, trees are categorized into static
and dynamic trees, and only dynamic trees need to be deformed. To
construct the 3D Gaussian forest, we introduce a 3D Gaussian forest
initialization method based on dynamic-static separation. This method
first distinguishes between dynamic and static Gaussians, and then
constructs the dynamic and static forest separately. Subsequently, we
propose a 3D Gaussian forest optimization method based on deforma-
tion field and Gaussian decomposition. This method optimizes the de-
formation field, dynamic forest, and static forest separately. Next, we
present a 3D Gaussian forest rendering method based on HVS mod-
els to achieve real-time rendering. This method first selects and de-



forms the dynamic forest based on the acuity model and then selects
and renders dynamic and static forests based on the contrast sensitivity
function (CSF) model.

Compared to the state-of-the-art (SOTA) methods, our method
achieves higher PSNR and smaller LPIPS in foveal and salient re-
gions. Our method dramatically improves rendering performance with
higher visual perceptual quality, achieving up to 11.33X speedup. We
also conducted a user study, which proves that the perceptual quality
of our method has a high visual similarity with the ground truth. Fig.
1 shows the comparison between the results of our method and those
of the SOTA methods. The close-ups illustrate the rendering details
in the foveal and periphery regions of our method compared to the
ground truth (GT), the D-GS [1], and the MS-GS methods [2].

In summary, the contributions of this paper are as follows:

• a foveated 3D Gaussian splatting pipeline for rendering dynamic
scenes in real-time. To the best of our knowledge, this is the first
method to adapt foveated rendering to 3DGS pipeline.

• a 3D Gaussian forest representation for dynamic scenes, a
dynamic-static separation-based initialization method, and a de-
formation field and Gaussian decomposition-based optimization
method.

• a 3D Gaussian forest rendering method based on HVS models,
which selects, deforms, and renders Gaussian forest based on the
acuity model and contrast sensitivity function model.

2 RELEATED WORK

In this section, we first give a brief review of the research on 3DGS,
and then discuss the methods for foveated rendering. For a more com-
prehensive review of 3DGS and foveated rendering, we recommend
the readers refer to the reviews [4, 5].

2.1 3D Gaussian Splatting.
NeRF-based methods has achieved great success in static and dynamic
scenes reconstruction[6, 7, 8], but with low rendering performance.
Recent 3D Gaussian Splatting [9] has become a prominent technique
in computer graphics, offering an efficient method for rendering com-
plex scenes with photo-realistic results. 3DGS begins by initializing
3D Gaussians with SfM points, and then the Gaussians are rendered
using differentiable rasterization. Although 3DGS has achieved good
results in terms of rendering performance and quality, there is still
room for further improvements, including dynamic scenes, multi-scale
images, anti-aliasing, and semantic segmentation.

3DGS can’t be used directly for dynamic scenes. One way to extend
3DGS to dynamic scenes is to learn deformations instead of modeling
the scene at every time step. Research in this area follows two main
approaches: one focuses on constructing a deformation field for all
Gaussians [1, 10, 11], while the other constructs the field by pairing a
small number of Gaussians to control the rest [12].

3DGS will result in strong artifacts when changing the sampling
rate. Yu et al. [13] proposed Mip-Splatting, which introduced a 3D
smoothing filter and 2D Mip filter to eliminate high-frequency arti-
facts and mitigate aliasing and dilation issues. Yan et al. [2] pro-
posed a multi-scale Gaussian representation (MS-GS), which aggre-
gates smaller Gaussians into larger ones. Kerbl et al. [14] proposed
a hierarchical Gaussian representation (H-GS), which also aggregates
smaller Gaussians into larger ones but maintains the relationships be-
tween them in a multi-layered binary tree structure. This allows H-GS
to efficiently select appropriate Gaussians by searching the tree instead
of iterating through all Gaussians, thus improving rendering efficiency.
Although this improves Gaussian selection efficiency, ideally allowing
it to be done in linear time, the time required increases significantly
for lower-resolution images due to the imbalance in the binary tree
structure. An alternative is to represent the scene as a forest with a
fixed number of layers per tree. Moreover, this strategy of aggregating
Gaussians is only suitable for static scenes and not for dynamic scenes,
where the relative positions of Gaussians change over time.

3DGS is also extended to scene understanding and semantic seg-
ment. Zhou et al. [15] proposed Feature-3DGS, which learns seman-
tic feature for each Gaussian and achieves semantic segmentation in
novel view. Ye et al. [16] went a step further and proposed GS-group,
which learns identity encoding for each Gaussian and achieves scene
editing. However, these methods are only suitable to static scenes.

In this paper, we propose a 3D Gaussian forest representation for
dynamic scenes. In previous methods, Gaussians correspond to the
same LOD belonging to different scales or hierarchies of Gaussian.
While in our representation, Gaussians at the same layer across differ-
ent trees correspond to the same LOD.

2.2 Foveated Rendering.

Early research in foveated 3D rendering focused on ray tracing-based
methods [17, 18, 19, 20, 21, 22]. To enhance rendering efficiency, re-
searchers focus on rasterization-based foveated rendering techniques.
Guenter et al. [23] rendered three image layers around the gaze point
with discrete sampling rates. Stengel et al. [24] expanded the fovea
region linearly based on the gaze motion vector. Turner et al. [25]
achieved foveated rendering by aligning multiple low-resolution and
one high-resolution renderings of the periphery region. Besides, mul-
tiple mapping-based foveated rendering methods have been proposed
[26, 27, 28, 29, 30, 31, 32, 33]. Blurred rendering results in the pe-
riphery region, especially those containing visual features, can lead to
a perceived decrease in visual quality. Many methods have been pro-
posed to enhance the visual perceptual quality in the periphery region
[24, 34, 35, 36].

With the advancement of deep learning techniques, researchers
have applied these methods to improve the rendering quality and per-
formance [37, 38, 39, 40, 41], and predict the gaze movement [42, 43].
Deng et al. [38] introduced FoV-NeRF, which is the first to combine
foveated rendering and NeRF. FoV-NeRF used multiple MLPs to syn-
thesize images for foveal, peripheral, and far-peripheral regions. The
foveal region is rendered with the highest quality, while the periph-
eral and far-peripheral regions with lower quality, and then Fov-NeRF
fused them to generate the final foveated images. Bauer et al. [39] de-
veloped FovolNet, a fast-foveated deep neural network that improves
peripheral visual quality through an efficient reconstruction network.

In this paper, we adapt the foveated rendering to the 3DGS pipeline
to achieve real-time rendering for dynamic scenes.

3 METHOD

We introduce a 3D Gaussian forest to represent the dynamic scene (Sec
3.1). Based on this representation, we propose Fov-GS, a scene-aware
foveated 3D Gaussian splatting method. Figure 2 shows the pipeline
of our method. In this pipeline, we first initialize the 3D Gaussian for-
est based on dynamic-static separation (Sec 3.2). Then, we optimize
the 3D Gaussian forest based on deformation field and Gaussian de-
composition (Sec 3.3). At last, we render the 3D Gaussian forest to a
foveated image based on the HVS models (Sec .3.4).

3.1 3D Gaussian Forest Representation

The main idea of foveated rendering is to render different resolutions’
images for different regions [44]. However, due to the nature of 3DGS,
directly using the original representation to render multi-resolution im-
ages may result in significant artifacts and reduce rendering perfor-
mance [2]. To address multi-resolution rendering, various Gaussian
representations have been proposed [2, 13, 14], but these methods are
only suitable for static scenes, and there is no one-to-one correspon-
dence between LOD and the scales or hierarchies of Gaussians. In
dynamic scenes, the computational cost of deforming Gaussian during
rendering is much higher than the rendering itself.

To adapt foveated rendering to 3DGS for real-time rendering in dy-
namic scenes, we propose a 3D Gaussian forest representation, which
uses a tree instead of a Gaussian as the smallest primitive, thus realiz-
ing fast localization of Gaussian at different layers and the separation
of dynamic and static objects.



SfM Gaussian Forest 
Construction

S
gtI

DynMask
Acuity 
based 
Select

CSF 
based 
Select

Deformation Field and Gaussian Decomposition-based 3D Gaussian Forest Optimization

HVS models based 3D Gaussian Forest RenderingDynamic-Static Separation-based 3D Gaussian Forest Initialization

OptimizationS

D

OptimizationD

StaMask

Sta

CSF 
based 
Select

DF

DF

Dyn

Optimization

DF

FovI

Initial 
Training

Dyn Sta 
Separation

Fig. 2: The pipeline of our proposed Fov-GS method.

As shown in Fig. 2, each scene can be represented as a forest ψ ,
and a forest contains multiple trees τ . Each tree is a binary tree con-
taining multiple layers of nodes νl , and each node is a 3D Gaussian
g. Each tree has the same number of layers, which are determined by
the HVS models. Gaussians on the same tree are not independent, and
they represent one primitive in the scene with different LOD. Gaus-
sians at the same layer across different trees correspond to the same
LOD. There are two kinds of trees in the forest, which are dynamic
trees τD and static trees τS. Dynamic trees correspond to dynamic
objects, with all contained Gaussians being dynamic gD. Static trees
correspond to static objects, with all contained Gaussians being static
gS. For each Gaussian, in addition to the traditional properties: Gaus-
sian center position x, quaternion r, scaling s, color c, opacity σ , we
add 2 extra properties: dynamic property Dyn and semantic property
Se. Similar to D-GS [1], we adapt a deformation field DF to deform
the dynamic Gaussian from the canonical space to space at a specific
time. The deformation field is modeled by an MLP. It takes the posi-
tion x of dynamic 3D Gaussian in canonical space and time t as input
and outputs the offsets δx,δ r,δ s of dynamic 3D Gaussians.

3.2 3D Gaussian Forest Initialization

We propose a dynamic-static separation-based 3D Gaussian forest ini-
tialization method with 3 sub-steps.

In the first sub-step, we train initial Gaussians. Similar to D-GS [1],
we first train initial static Gaussians G = {g} in canonical space, with
iterations imax. Then, we initialize the dynamic property Dyn of G as
False, where False denotes static, and set the semantic property Se to
−1, where −1 denotes background.

In the second sub-step, we separate the dynamic and static Gaus-
sians by iterating through all the training views in chronological order
to update Dyn and Se properties. Existing 3DGS-based methods for
dynamic scenes do not distinguish between dynamic and static ob-
jects, applying the deformation field universally. While straightfor-
ward, these methods are inefficient, as deforming all these Gaussians
could be time-consuming. Most real-world scenes have only a few dy-
namic objects, with the majority being static, thus we separate the dy-
namic and static Gaussians to improve rendering performance and re-
construction quality. Given a training view, the corresponding ground-
truth image Igt , corresponding semantic segmentation Seg [45], and
G, we first renders the image Ipred under this view. The optical flow
O f is then calculated based on Igt and Ipred , and the Dyn property is
updated by calculating the ratio of the total optical flow intensity to the
number of pixels in each segmentation instance. If this ratio exceeds
a pre-defined threshold εDS, this segmentation instance is considered
dynamic under this view. The Dyn of the Gaussians contributing more
than a pre-defined threshold εcon to the color of dynamic instance pix-
els is set to True, which denotes dynamic. The contribution con of a

Gaussian to the pixel color is calculated by Eq.1.
con =

αm
m
∏

n=1
(1−αn)

M
∑

m=1
αm

m
∏

n=1
(1−αn)

αm = σm · e−
1
2 (p−µm)

T
∑
′
m(p−µm)

(1)

where αm is transmittance, µm is the center of the projected 2D Gaus-
sian, ∑

′
m is the 2D covariance matrix, p is the pixel coordinate, and

m = 1, . . . ,M represents the Gaussians covering this pixel, sorted by
depth. The Se property is updated similarly. Only Gaussians with con
greater than εcon have their Se property set to Seg(p), where Seg(p)
denotes the mask ID for p. After Dyn and Se have been updated, the
dynamic Gaussians GD and static Gaussians GS are separated accord-
ing to their Dyn property.

In the third sub-step, we initialize the forest according to the sepa-
rated dynamic and static Gaussians with Algorithm. 1. This algorithm
takes dynamic Gaussians GD, static Gaussians GS, pixel size sL, and
total layer number L as inputs, and outputs the initialized 3D Gaussian
forest ψ0.

As shown in Fig.3 (a) and (b), we first layer the Gaussians, with
each layer corresponding to a LOD (Line 1). νl=1,··· ,L denotes to the
l-th Gaussian layer. The Layers function has three steps: 1) Create the
threshold intervals with the upper and lower thresholds for each layer;
2) Calculate the size of each Gaussian; 3) Compare each Gaussian’s
size with the layer thresholds and assign it to the appropriate layer.
The upper and lower thresholds for each layer are determined as fol-
lows. According to the Nyquist-Shannon Sampling Theorem [46], the
sampling rate must be at least twice the highest frequency present in
the signal. G is trained at the original resolution of H×W with corre-
sponding pixel size sL, the highest frequency in G is 1

2sL
. For a level of

detail with resolution H
2L−l × W

2L−l , the pixel size becomes 2L−l · sL with
the field of view (FOV) unchanged, and the maximum frequency that
can be sampled under this resolution without loss is 1

2·2L−l ·sL
. Taking

the camera model into account, the size s′ of the projected 2D Gaus-
sian can be approximated by Eq. 2.

s
′
= f · s

d
(2)

where f is the focal of the camera, s is the 3D size of Gaussian, d is
the depth from the camera to the Gaussian. Thus, Gaussians larger
than 2L−l+1 · sL ·d/ f can be sampled losslessly under this resolution.
Based on the above analysis, GD and GS are divided into L layers

{
L
∪

l=1
ν

D/S
l }. The L-th layer corresponds to the LOD with the highest

quality. Gaussian with 3D sizes between 2L−l+1 · sL ·d/ f and 2L−l+2 ·
sL ·d/ f are placed in the l-th layer (νl). Gaussian with 3D sizes smaller



Algorithm 1 Dynamic-Static Separation-based Forest Initialization

Input: dynamic Gaussians GD, static Gaussians GS, pixel size sL, and
layer number L.

Output: initialized 3D Gaussian forest ψ0

(
ND

∪
i=1

τD
i ,

NS

∪
j=1

τS
j

)
.

1: {
L
∪

l=1
ν

D/S
l } ← Layers(GD/S,L,sL)

2: for l = L, . . . ,2 do
3: for gD/S

l ∈ νl do
4: gD/S

l−1 ←Nearest(gD/S
l ,ν

D/S
l−1 )

5: if Same(Se) and NumChild(gD/S
l−1 )< 2 then

6: gD/S
l ← LeftOrRightChild(gD/S

l−1 )
7: else
8: g′ ← Twice(gD/S

l )

9: ν
D/S
l−1 ← AddNode(g

′
)

10: gD/S
l ← LeftChild(g′)

11: end if
12: end for
13: for gD/S

i/ j ∈ ν1 do

14: ν
D/S
i/ j,1 = gD/S

i/ j
15: for l = 1, . . . ,L−1 do
16: ν

D/S
i/ j,l+1 = Le f tRightChild(νD/S

i/ j,l)

17: end for
18: end for
19: end for
20: τ

D/S
i/ j ← {

L
∪

l=1
ν

D/S
i/ j,l}, i = 1, . . . ,ND, j = 1, . . . ,NS

21: ψ0 ←
(

ND

∪
i=i

τD
i ,

NS

∪
j=1

τS
j

)
than 2 ·sL ·d/ f are placed in the L-th layer (νL), and Gaussian with 3D
sizes bigger than 2L · sL · f ·d are placed in the 1-th layer (ν1). The 3D
size of a Gaussian is defined as the length of the longest axis of the 3D
ellipsoid. The f and d are approximated using the average focal and
depth in training views.

Next, as shown in Fig.3 (c), we construct the relationship between
Gaussians of different layers (Lines 2-12). The tree is constructed
from the bottom up, for all dynamic or static Gaussians gD/S

l in layer

l (Lines 2-3), we find the closest dynamic or static Gaussian gD/S
l−1 in

layer l− 1 (Line 4). If gD/S
l−1 has the same Se as gD/S

l and gD/S
l−1 has

fewer than 2 child nodes (Line 5), we set gD/S
l as the child node of

gD/S
l−1 (Line 6). If gD/S

l−1 already has one child node, we determine the

size of gD/S
l and the existing child node, the smaller one is the left

child node, and the larger one is the right child node. Otherwise(Line
7), we create a new Gaussian g′ whose size is twice that of gD/S

l (Line

8), and place g′ to layer l−1 (Line 9), and gD/S
l is set as the left child

of g′ (Line 10). Finally, we iterate through layer 1 (Line 13), and set
each Gaussian in layer one as the root node of each binary tree (Line
14). Then, we iterate through all layers (Line 15), and the child nodes
are determined as the left and right child Gaussians (Line 16). The tree
τ is formed from sets of layered Gaussians (Line 20). ND and NS are
the numbers of dynamic and static Gaussians in the layer 1. The forest
ψ0 is then built from these trees (Line 21).

3.3 3D Gaussian Forest Optimization

D-GS optimized 3D Gaussian in canonical space and the deformable
field jointly with a stop-gradient operation on x in the deformable field,
which causes the actual gradient propagated to x differ from the the-
oretical one, and leads to suboptimal optimization of x and the de-
formable field. Besides, D-GS treats all Gaussians as dynamic, which

(a) (b) (c) /D SG
/D S

lv
/D S

Fig. 3: Given a set of dynamic or static Gaussian GD/S with the same
se, Algorithm 1 first divides the Gaussian into L layers, νD/S. It then
constructs the relationships between νD/S and generates the Gaussian
trees τD/S.

introduces inaccuracies in the deformation of the dynamic Gaussians
due to the influence of nearby static Gaussians.

We propose a deformation field and Gaussian decomposition-based
optimization method to address these problems. During optimization,
we select time t and view View in chronological order from the train-
ing set, and randomly select layer l from [1, · · · ,L], for each iteration.
The optimization is divided into dynamic forest optimization and static
forest optimization.

The dynamic forest optimization contains 2 steps: deformation field
optimization and dynamic trees optimization. For the optimization of
deformation field DF , we first compute the deformed Gaussian g′t for
each Gaussian g ∈ νD

l of l-th layer of dynamic trees at time t with
Eq.3.

gt ′ = g∗tpre
+DF(x, t)−DF(x, tpre)

≈ g′tpre +DF(x, t)−DF(x, tpre)
(3)

where x is the position of g in canonical space, tpre is the time of the
previous iteration, and g∗tpre

is the optimal Gaussian at time tpre. Due

to g
′
tpre

has been optimized in previous iteration, we approximate g∗tpre

with g
′
tpre

. Next, we render the image I′ based on deformed Gaussian

at l-th layer gt
′ ∈ νD

l
′. Since DF should only model the deformation

of dynamic objects, a masking operation is performed on ground truth
full-resolution image Igt based on dynamic mask DynMask, i.e., the
non-dynamic region of Igt is turned to black. DynMask is generated in
the same way as in Sec 3.2. Then the loss is calculated with Eq.4 based
on the masked ground truth image Imgt and I′, and DF is optimized
based on this loss.

L = (1−λ )L1(Imgt , I′)+λLD−SSIM(Imgt , I′) (4)

where L1 denotes the L1 loss and LD−SSIM denotes the D-SSIM term.

For the optimization of dynamic trees τD(
L
∪

l=1
νD

l ), we first compute

the deformed dynamic Gaussians gt
′′ at time t using optimized DF

based on Eq. 5.
g′′t = g+DF(x, t)) (5)

Then, we render the image I′′ based on deformed Gaussian gt
′′ ∈ νD

l
′′,

and a new DynMask′′ is generated. The masking operation and loss
computation are the same as in the first step, while only νD

l is opti-
mized in this step.

For the optimization of static forest which is composed with the

static trees τS(
L
∪

l=1
νS

l ), we first render the image I′′′ through the Gaus-

sians νS
l of the l-th layer of the static trees, and the static mask

StaMask is generated by inverting DynMask′′. Different from the op-
timization of the dynamic forest, the masking operation is not per-
formed on the ground truth image, while the loss is computed only for
the region corresponding to StaMask. This is because the dynamic re-
gion of Igt is occupied by the dynamic objects in the foreground, and
the static objects are blocked. The static Gaussians are optimized only
when they are not blocked, and StaMask helps achieve this. Then, νS

l
is optimized based on the masked loss.



Similar to 3DGS [3], the Adaptive Density Control (ADC) opera-
tion is executed every 100 iterations. The pruning and densifying pro-
cesses are executed only for the Gaussian at the layer corresponding
to this iteration. Besides, we also update the dynamic-static separation
and the structure of the forest every 100 iterations. We first deform
the dynamic Gaussians and render the image at the time, view, and
layer corresponding to this iteration. Then, we compute the optical
flow and optimize the Dyn and Se properties in the same way as in Sec
3.2. Next, the forest is updated in a similar way as in Algorithm 1. We
only update the parent and children nodes for the Gaussian at the layer
corresponding to this iteration. For the pruning process, we re-search
the parent Gaussian for the child Gaussian of the pruned Gaussian.
For the densifying process, we re-search the parent Gaussian for the
newly added Gaussian. When searching for a parent node, we aim
to preserve the original parent-child relationships. If the center of the
child Gaussian lies within the ellipsoid defined by the parent Gaussian
and both parent and child Gaussians have the same Dyn and Se, the
existing parent-child relationship is retained. Otherwise, a new parent
is searched for the child Gaussian.

3.4 HVS Models based 3D Gaussian Forest Rendering
Foveated rendering speeds up rendering while maintaining visual per-
ceptual quality by adjusting rendering quality for each image position
based on the characteristics of HVS. For a giving rendering quality,
existing methods [2, 14] require complex selection strategies to select
the appropriate Gaussians due to there is no one-to-one correspon-
dence between LOD and the scales or hierarchies of Gaussian, and a
more complex selection process is needed for these methods to achieve
foveated rendering with high quality. While, in our 3D Gaussian for-
est, Gaussians at the same layer across different trees correspond to
the same LOD, which paves the way for foveated rendering.

We propose a HVS models based 3D Gaussian forest rendering
method. The core of our method is selecting appropriate layers of
Gaussian for each tree according to the acuity model and the CSF
model during rendering. For trees in dynamic forest, we first select
Gaussian layer to be deformed based on the acuity model and de-
form them, and then select Gaussian layer to render based on the CSF
model. For trees in static forest, we directly select Gaussian layer to
render based on the CSF model.

Acuity model based dynamic forest selection and deformation.
Compared with D-GS, our forest representation distinguishes between
dynamic and static Gaussians, so that only the dynamic Gaussians
need to be deformed before rendering, which improves rendering ef-
ficiency. To further improve rendering speed, we aim to deform only
those Gaussians that are perceived by the user. A contradiction is that
we can only determine which Gaussians are perceived after they have
been deformed. Since the gaze point changes much faster than the de-
formation of the dynamic objects, we propose a two-phase strategy to
resolve this contradiction. In the first phase, for each dynamic Gaus-
sian tree τ ∈

{
τD}, we first calculate the acuity a corresponding to it

using Eq. 6 based on the acuity model.

a = w0 +me(P,
−
µ) (6)

where w0 is the acuity limit, m is the acuity slope, P is the gaze point,e

is a function to calculate the eccentricity,
−
µ is the mean projected 2D

position, calculated by projecting the 3D positions of all the dynamic
Gaussians in τ from the previous frame into the current frame’s view.

Then, we select the layer l for each τ with appropriate LOD. If
−
µ is

in the foveal region (e < e0), the L-th layer is selected to have the best

visual perceptual quality. If
−
µ is in the periphery region, the l-th layer

is selected to have the same visual perceptual quality as the foveal
region, and l is calculated with Eq. 7.

l = L−
⌈

log2

(
a

w0 +me0

)⌉
(7)

where ⌈⌉ denotes upward rounding. Next, we calculate the deforma-
tion δl for the Gaussians in the selected layer with time t, and δl is

applied to adjust the properties of all Gaussians throughout the tree.
In the second phase, we re-select the layer for deformation to address
changes of the region caused by the deformation in the first phase.
Acuity and selected layer are re-calculated in the same way as in the
first phase. If the layers selected in the first and second phases are
not the same, the deformation is re-computed and the tree τ is re-
deformed. In most cases, the layers selected in two phases are equal
since the deformation is less compared to the change in the gaze point.
Compared to deforming all Gaussians in a tree, this two-phase strategy
reduces the number of Gaussians that need to be deformed.

CSF model-based dynamic and static forest selection. The acuity
model gives a roughly linear relationship between visual perception
and eccentricity. However, visual perception is influenced by multiple
factors, such as visual features. Fan et al. [47] proposed a visual per-
ceptual approach to combine acuity and visual features based on the
CSF model. Since we aim for an image whose visual perceptual qual-
ity aligns with the capabilities of the HVS, we try to render an image
with smooth transitions in visual quality, rather than one with abrupt
changes or layering. Instead of rendering different resolutions’ images
for each layer [23, 38], we render the image at a uniform resolution and
use a 2D filter to control the visual perceptual quality. First, we render
a coarse image, perform saliency detection on this image to detect vi-
sual features, and obtain the saliency map Sal. This image is rendered
using only the first layer of trees to quickly obtain a rough saliency de-
tection result, which guides the subsequent selection. Then, for each
tree τ in the dynamic and static forest, we select the appropriate layer
and construct filters. For each τ , the projected 2D mean position is
first computed, and the saliency sal ∈ [0,1] for the tree is obtained as
the value of Sal corresponding to the pixel at the projected 2D mean
position. The acuity a and the layer l are then calculated based on
Eq.6 and Eq.7. If l = L, then only Gaussians at layer L are selected
to render. Otherwise, Gaussians at layers l and l + 1 are selected to
synthesize images with smooth transitions. Gaussians in layer l can
be perceived perfectly, while Gaussians in layer l + 1 can’t. Inspired
by [13], we design 2D Gaussian low-pass filters Flow to filter the high-
frequency component of Gaussians in layer l +1, which are designed
using Eq.8.

g(x) f ilted = (g⊗Flow)(x)

g(x) f ilted =

√
∑
′

∑
′
+ 1

f I
e
− 1

2 (x−µ)T
(

∑
′
+ 1

f I
)−1

(x−µ) (8)

where µ and ∑
′

are the projected 2D center and covariance matrix of
Gaussian, and f is the maximum spatial frequency that can be per-
ceived. f is calculated using Eq.9 based on the CSF model according
to [47].

f =
1+ k · sal

a
(9)

where k is a pre-defined weight of sal, which indicates the degree to
which salient regions attract human visual attention and thus influence
human visual perception.

Finally, the foveated image IFov is rendered by simultaneous ren-
dering the selected dynamic and static Gaussians and applying the 2D
filters.

4 EXPERIMENT

4.1 Implementation
Datasets. We evaluated the quality and performance of our method
for foveated image synthesis on Hyper-NeRF [8] and NeRF-DS [48]
datasets. The Hyper-NeRF dataset is a monocular real-world dataset
comprising 15 complex real-world physical scenes captured using
handheld cameras, with a resolution of 1920×1072. Consistent with
D-GS, we selected 3 real-world scenes for a detailed comparison,
which are cookie, americano, and torchocolate. The NeRF-DS dataset
is a monocular real-world dataset comprised of 8 complex real-world
physical scenes captured using handheld cameras, with a resolution of
480× 270. We selected 3 real-world scenes for detailed comparison,
which are basin, plate, and cup. For a fair comparison, we conducted



experiments on these two datasets with the same training and testing
split as [1].
Implementation Details. We implemented our method on top of
the original 3DGS [3]implementation in C++ and PyTorch, the de-
formable field model DF is the same as in D-GS [1]. We conducted
training for a total of 40k iterations. We first performed the initial
training used in Sec 3.2 for imax = 3k iterations. Subsequently, we
optimized the 3D Gaussian forest and the deformation field, and the
hyper-parameters are the same as in D-GS. The ADC operation is ex-
ecuted every 100 iterations. The dynamic-static separation and the
structure of the forest is updated every 100 iterations. For real-time
rendering, we used an HTC Cosmos HMD with a Droolon aGlass to
track the gaze point of the user. The parameter of the HVS models
is set as w0 = 1/48◦, m = 1.32′per◦, k = 0.4 which is the same as in
[44] and [47]. The fovea region is defined with e < 10◦ which is the
same as in [47], and the periphery region is defined with e > 10◦. The
salient region is defined where sal > 0.3. The threshold εDS and εcon
are set as 0.5. The total number of layer L is set as 4. All experiments
are performed on a PC workstation with a 3.8 GHz Intel(R) Core(TM)
i7-10700KF CPU, 64 GB of memory, and an NVIDIA GeForce GTX
4090 GPU.

4.2 Comparison
We compare our method with the SOTA 3D Gaussian-based methods,
D-GS [1] and MS-GS [2]. Similar to our approach, D-GS extends
the original 3DGS by training a deformation field to control Gaussian
deformation. However, it does not distinguish between dynamic and
static Gaussians, deforming all Gaussians uniformly. It cannot be used
for foveated rendering because it is trained only with full-resolution
images. For a fair comparison, we utilize the optimal parameters re-
ported in its paper and render full-resolution images for D-GS. MS-GS
trains different scales’ Gaussians for images of different resolutions,
but there is no relationship between the Gaussians of different scales.
Foveated rendering can be achieved with MS-GS by rendering in dif-
ferent regions with different scales of Gaussian. Since it is designed
for static scenes, we extend it to dynamic scenes by training a deforma-
tion field for each scale of Gaussian and rendering in different regions
with different scales of Gaussian to synthesize foveated images.
4.2.1 Quality
Visualization Results. The quality of our results is compared with
those of ground truth and the comparison methods in Fig. 4. The
first column of images shows the comparison between our method and
the ground truth. The yellow circles on the image indicate the foveal
region. The second column of images shows the close-ups of the ren-
dered images for comparison (foveal region, blue and green rectan-
gles). Our results demonstrate higher similarity to the ground truth,
with clearer details in both the foveal and salient regions. In contrast,
the comparison methods exhibit varying degrees of blurriness and ar-
tifacts. We summarize the qualitative improvements of our method
as follows: 1)Accurate rendering of rigid body motion. As shown in
cookie and torchcolate scenes, our method renders high-fidelity cookie
and blowtorch. The cookie rendered by the D-GS and MS-GS meth-
ods loses the chocolate detail on top of the cookie, and the position
of the rendered blowtorch is far from the real position. 2) Accurate
rendering of fluid deformation. As shown in americano scene, our
method renders the flow of coffee into the cup and its diffusion in
the water with more detail, while the renderings of D-GS and MS-
GS are more blurred, and the shape of the coffee changes a lot. 3)
Successful rendering of physical phenomena. As shown in torchoco-
late scene, our method renders the blue flame of the blowtorch and
the chocolate lit with high precision, while the images rendered by
D-GS and MS-GS are blurry and incomplete. 4) Accurate rendering
of specular reflections. As shown in the basin, plate, and cup scenes,
our method renders the specular reflections much closer to the ground
truth, while D-GS and MS-GS produce blurry specular reflections with
large artifacts. These improvements can be explained as follows: 1)
Our method models dynamic objects more accurately by separating
them from static ones. 2) Our method uses the HVS models to guide
rendering, rather than simply using layered Gaussians.

Quantitative Results. We use peak signal-to-noise ratio (PSNR)
and learned perceptual image patch similarity (LPIPS) to quantita-
tively evaluate the rendering quality. To validate the effectiveness of
foveated rendering, we partition the image into four regions for qual-
ity evaluation: the whole image (whole), the foveal region (foveal),
the periphery region (periphery), and the salient region (salient), and
compute PSNR and LPIPS for each region. Table 1 shows the quan-
titative rendering quality comparison in different regions between our
method and prior methods on the Hyper-NeRF dataset and NeRF-DS
dataset.

Our method demonstrates the best rendering quality on foveal and
salient regions across all scenes. For the foveal region, our method
outperforms D-GS and MS-GS because people’s attention is typically
attracted to dynamic objects, making the foveal region often lie on
these dynamic objects. For the salient region, our method outperforms
D-GS and MS-GS because most of the salient regions are dynamic
objects and our method reconstructs them more accurately than D-GS.
Additionally, we select Gaussians based on both acuity and saliency,
using more accurate Gaussians for salient regions during rendering.
As a result, despite rendering foveated images, our method achieves
better results in salient regions compared to D-GS, which renders full-
resolution images. Our method models dynamic objects more accu-
rately by separating them from static ones. This separation allows the
deformation field to fit only the dynamic object’s deformation, avoid-
ing interference from nearby static objects. For the whole and periph-
ery regions, the image quality of our method is lower than that of D-
GS. This is because D-GS renders the full-resolution images, while our
method renders the foveated image. Although the rendering quality is
reduced, most of the degradation occurs in periphery regions, which
are less important since users are primarily focused on dynamic and
foveal regions. Our method is better than MS-GS in all regions, both
of which render foveated images. This is because our method uses
the HVS models to guide rendering, while MS-GS realizes foveated
rendering by simply rendering scaled Gaussians.

4.2.2 Performance

Table 2 shows the quantitative performance comparison between our
method and the SOTA methods in different scenes. The results show
that our method improves the performance by 4.87X ∼ 11.33X com-
pared to D-GS while maintaining higher image quality in the foveal
and salient regions. The performance improvement is due to two fac-
tors: first, our method deforms only dynamic Gaussians, whereas D-
GS deforms all Gaussians; second, D-GS renders full-resolution im-
ages, while our method renders foveated images. Compared to MS-
GS, our method improves the performance by 2.51X ∼ 7.57X with
higher image quality in all regions. The performance improvement is
because our method deforms only dynamic Gaussians, whereas MS-
GS deforms all Gaussians. Compared to 4DGS [49], our method
improves the performance by 3.28X ∼ 7.79X . Additionally, our
method achieves higher rendering performance compared to NeRF-
based methods, such as Hyper-NeRF [8], which has a frame rate of
less than 1 fps, thanks to the Gaussian representation. In our experi-
ments, users wear VR HMDs that require rendering binocular images,
and our method renders binocular images with 60 fps to 170 fps for
different dynamic scenes. Compared to rendering monocular images,
the performance of rendering binocular images decreases by about 1%.
This is because 73% of the total rendering time is spent on Gaussians
deformation, and only 27% is spent on image rendering. In addition,
only one deformation calculation is needed for rendering binocular im-
ages, and we render binocular images in parallel on the GPU, so the
performance degradation of rendering binocular images is minimal.

4.3 Ablation Studies

We conducted ablation studies to validate the effectiveness of our pro-
posed components, including dynamic-static separation (DS-S), acu-
ity model-based selection and deformation (Acuity), and CSF model-
based selection and rendering (CSF). First, we apply the MS-GS as
the baseline by replacing the scaled Gaussians with the 3D Gaussian
forest. The baseline constructs the 3D Gaussian forest in the same



D
-G
S

M
S-G

S

G
T

O
urs

M
S-G

S
D
-G
S

G
T

O
urs

D
-G
S

M
S-G

S

G
T

O
urs

D
-G
S

M
S-G

S

G
T

O
urs

Ours

Ours

Ours

Ours
Ours

GT

GT

GT

D
-G
S

M
S-G

S

G
T

O
urs

Ours

GT

cookie

M
S-G

S
D
-G
S

O
urs

G
T

Ours

GT

amer
icano

torcho
colate

basin

plate

cup

Fig. 4: Left: Comparison of the proposed Fov-GS (upper-right) and the ground truth image (GT, lower-left). Right: The close-ups of the images
of both the foveal region (yellow) and periphery regions (blue and green). Compared with D-GS [1] and MS-GS [2], our results are closer to
GT, with higher rendering quality.



Table 1: Quality comparison between our method, D-GS, and MS-GS on HyperNeRF and NeRF-DS datasets.

Region whole foveal periphery salient

Method Ours D-GS MS-GS Ours D-GS MS-GS Ours D-GS MS-GS Ours D-GS MS-GS

Metric PSNR↑
cookie 26.54 30.32 24.04 28.97 28.86 28.71 23.57 30.59 23.63 28.78 28.41 20.81

americano 26.76 29.41 22.84 30.15 28.76 28.84 24.07 29.51 22.40 27.59 27.03 18.82
torchocolate 27.17 30.11 22.70 29.83 25.72 25.63 22.79 31.02 22.49 28.45 27.00 19.67

basin 20.57 21.13 19.99 19.03 18.30 18.29 20.99 21.11 20.36 18.47 17.89 16.98
plate 18.99 20.24 16.49 21.66 20.72 21.63 17.50 21.09 16.38 18.88 18.09 16.31
cup 19.64 23.27 16.19 20.72 20.08 20.09 17.08 23.95 15.86 21.11 20.95 17.00

Metric LPIPS↑
cookie 0.284 0.071 0.394 0.031 0.058 0.058 0.452 0.061 0.386 0.154 0.226 0.550

americano 0.161 0.060 0.327 0.052 0.059 0.058 0.278 0.045 0.312 0.159 0.167 0.482
torchocolate 0.182 0.047 0.387 0.009 0.063 0.063 0.406 0.037 0.376 0.157 0.162 0.540

basin 0.299 0.234 0.421 0.213 0.240 0.240 0.370 0.162 0.351 0.409 0.461 0.495
plate 0.260 0.210 0.343 0.142 0.143 0.145 0.335 0.154 0.286 0.371 0.473 0.516
cup 0.227 0.154 0.376 0.143 0.160 0.159 0.385 0.119 0.341 0.400 0.411 0.468

Table 2: Performance comparison between our method, D-GS, MS-
GS and 4DGS on HyperNeRF and NeRF-DS datasets.

Performance/ms↓ cookie americano torchocolate basin plate cup

Ours 16.21 14.91 16.37 6.98 6.13 5.87
D-GS 123.65 168.92 126.33 34.48 32.25 28.57

MS-GS 74.31 112.9 72.58 17.57 15.20 17.65
4DGS 88.34 116.22 86.79 24.21 22.04 19.28

way as in Sec 3.2 and Sec 3.3, without separating dynamic and static
Gaussians, and the Gaussians to deform and render is selected based
on its position of last frame. Then, we integrate our dynamic-static
separation to the baseline (baseline+DS-S), constructing 3D Gaussian
forest by separating dynamic and static trees and deforming only the
dynamic Gaussians during rendering. Next, we incorporate our acuity
model-based selection and deformation to the baseline (baseline+DS-
S+Acuity), deforming only the selected dynamic Gaussians based on
acuity during rendering. Finally, we apply our CSF model-based se-
lection and rendering to the baseline to form the complete Fov-GS
(baseline+DS-S+Acuity+CSF). Numerical results are presented in Ta-
ble 3, and qualitative results are visualized in Fig. 5.

As shown in Table 3, compared with Baseline, the Baseline+DS-S
improves the quality in PSNR by 0.62, and the performance in ms by
32.16, demonstrating separating dynamic Gaussians from static Gaus-
sians not only improves reconstruction accuracy but also dramatically
improves rendering performance. With the addition of the Acuity, the
Baseline+DS-S+Acuity further improves the quality in PSNR by 0.71,
illustrating that acuity-based selection and deformation can more accu-
rately select the Gaussian for deformation compared to selection based
on the position of the previous frame. While there is a reduction in ren-
dering performance, it is minimal. With the addition of the CSF, our
complete Fov-GS (Baseline+DS-S+Acuity+CSF) further improves the
rendering quality by 1.62. The large increase in quality is due to that
the images are rendered with more detailed Gaussians, thus making the
visual perceptual quality align with the capabilities of the HVS. The
small decrease in performance is worth compared to the large increase
in quality.

The visualization results in Fig. 5 further demonstrate the effec-
tiveness of our proposed components. The comparison results be-
tween Ours and the Baseline indicate that separating dynamic Gaus-
sians from static Gaussians improves quality. The other two compo-
nents affect the periphery region mostly, thus the foveal regions of
Ours, Baseline+DS-S+Acuity, and Baseline+DS-S+Acuity+CSF are
similar. The comparison results between Baseline+DS-S+Acutiy and
Baseline+DS-S indicate that acuity-based selection can more accu-
rately select the Gaussian for deformation. The comparison results
between Ours and Baseline+DS-S+Acutiy indicate that rendering with
more detailed Gaussians improves rendering quality.

Table 3: Quality and Performance Ablation Study

Method Quality/PSNR↑ Performance/ms↓
Baseline 20.65 49.71
Baseline+DS-S 21.27 8.55
Baseline+DS-S+Acuity 21.98 9.18
Baseline+DS-S+Acuity+CSF (Ours) 23.57 11.71

We illustrate the results of dynamic-static separation in different
scenes in Fig. 6. Although the images rendered only with static Gaus-
sian exhibit some floaters due to poor dynamic-static separation at the
edges of dynamic objects, our method successfully separates the dy-
namic hand and cookie. Static Gaussians well reconstruct the static
parts that are occluded by the dynamic objects. Accurately recon-
structing and rendering the occluded static part is very difficult be-
cause it is not visible under the current view, and these Gaussians can
be reconstructed only based on the images of other views. Due to we
separate the dynamic Gaussians from the static Gaussians, these oc-
cluded static Gaussians can be reconstructed accurately. However, the
images rendered only with static Gaussian has some floaters. This is
because the Gaussian at the edges of the dynamic objects has poor
dynamic-static separation.

OursGT B+D+A B+D B

Ours

GT

Fig. 5: Qualitative comparison for ablation study. As illustrated in the
close-ups, our results (Ours) are closer to ground truth (GT), compared
with Baseline (B), Baseline+DS-S (B+D), and Baseline+DS-S+Acuity
(B+D+A).

5 USER STUDY

We design a within-subject study to evaluate the visual perceptual
quality on the Hyper-NeRF and NeRF-DS datasets of our method
compared with the previous methods.

5.1 User Study Design
Participants and Setup. 15 participants (10 males and 5 females,
aged between 21-30) were recruited in this study, and all of them have



(a) GT (b) Ours (c)      rendered (d)      renderedD S
Fig. 6: Visualization of the ground truth image (a, GT), the image ren-
dered with full forest (b, Ours), the images rendered with dynamic (c)
and static trees (d) separately. The first line is the images correspond-
ing to the cookie scene and the second line is the images corresponding
to the hand scene.

had experiences in VR HMDs. Each participant wore an HTC Cos-
mos HMDs for the user study. The research was performed under the
oversight of Biology and Medical Ethics Committee of Beihang Uni-
versity, with protocol number BM20240277. Consent from the human
subjects in the research was obtained.
Conditions. The conditions included the ground truth images (GT),
our method (Ours), D-GS, and MS-GS.
Task and Procedure. There are 6 scenes used in the experiment,
which are cookie, americano, torchocolate, basin, plate, and cup. We
randomly select the camera parameters and time parameters from the
test split, and the selected parameters are arranged in chronological or-
der, so as to obtain reasonably deformed dynamic scene videos, each
of which lasts for 8s. We asked each participant to participate in the ex-
periment with 4 conditions in 6 scenes. Initially, we presented the GT
sequence to the participants, informing them that this was the bench-
mark result. Subsequently, we displayed the videos generated by GT,
Ours, D-GS, and MS-GS in a random order, asking participants to rate
the visual perceptual quality of each video sequence. The viewing
counts for all methods in the experiment were kept balanced. The vi-
sual perceptual quality score consists of 5 confidence levels: 5 means
that no artifacts were perceived at all, 4 means they perceived accept-
able artifacts for a few very short moments, 3 means they perceived ac-
ceptable artifacts, 2 means they perceived noticeable artifacts, 1 means
they perceived obvious artifacts. To mitigate the effects of visual fa-
tigue, after completing the ratings, participants are given a 10-second
rest before proceeding to the next test.
Statistical analysis. We compared the values of different conditions.
First, the normality of the data was assessed using the Shapiro-Wilk
test. Then the comparison was performed with a repeated-measures
ANOVA if the values showed a normal distribution. When values did
not follow a normal distribution, the comparison was performed us-
ing a Wilcoxon signed-rank test. In addition to the p-value of the
statistical test, we also estimate the size of the effect using Cohen’s
d. The d values are translated to qualitative effect size estimates of
Huge (d > 2.0), Very Large (2.0 > d > 1.2), Large (1.2 > d > 0.8),
Medium (0.8 > d > 0.5), Small (0.5 > d > 0.2), and Very Small
(0.2 > d > 0.01).

5.2 Results and Discussion
As shown in Fig. 7, we calculate the average score of all conditions,
and use the p-value and Cohen’s d to estimate the difference between
the comparison conditions and Ours. The results indicate a significant
improvement in our average score compared to both D-GS and MS-
GS, which is closest to the GT. The p-value= 0.15 of scores between
Ours and GT, with Cohen’s d= 0.49, indicates a Small effect size. This
suggests that our method has statistically visual perceptual similarity
with the ground truth. The p-value< 0.001 of scores between Ours and
D-GS, with Cohen’s d= 1.44, indicates a Very Large effect size. The
p-value< 0.001 of scores between Ours and D-GS, with Cohen’s d=
1.85, indicates a Very Large effect size. These results demonstrate that
compared to D-GS and MS-GS, our method significantly enhances the

visual perceptual quality of synthesized foveated images.

GT Ours D-GS MS-GS

Av
er

ag
e 

Sc
or

e

5

4

3

ns

***

***

Fig. 7: The average scores and standard deviations for all conditions
in our user study. Error bars indicate standard deviation. Asterisks
denote statistical significance between different conditions.

6 CONCLUSION

We propose a 3D Gaussian splatting method for foveated rendering
of dynamic scenes, named Fov-GS. In this method, we propose a 3D
Gaussian forest representation for dynamic scenes. We adopt a for-
est initialization method based on dynamic-static separation to con-
struct the 3D Gaussian forest, and a forest optimization method based
on deformation field and Gaussian decomposition to optimize the 3D
Gaussian forest and deformation field. For efficient foveated render-
ing, we propose a 3D Gaussian forest rendering method based on HVS
models which selects, deforms, and renders Gaussian forest based on
the acuity model and CSF model. Quantitative evaluation and visu-
alization experiments indicate that the proposed Fov-GS remarkably
outperforms existing methods in terms of rendering quality and effi-
ciency, achieving state-of-the-art performance. Our ablation studies
further validate the efficiency of the proposed components, and the
user study shows that our rendering results significantly improve the
visual perceptual quality compared to previous methods.

Our method has several limitations. The first limitation is that the
quality of the dynamic-static separation is strongly influenced by the
quality of the input semantic segmentation. During the initialization
of the 3D Gaussian forest, semantic segmentation is used for dynamic-
static separation. Poor segmentation quality affects the reconstruction
accuracy of dynamic object edges, leading to misclassification of some
dynamic Gaussians as static Gaussians and resulting in artifacts, such
as floaters, in the rendered static images. In the future, we intend to
use more advanced segmentation algorithms. In addition, for Gaus-
sians located at the boundary of dynamic and static separation, we
will further refine the separation by calculating their motion consis-
tency with the center Gaussians. The second limitation is that the ren-
dering performance decreases for scenes containing objects with fast
motion. This is because we use a two-step selection strategy to deter-
mine which Gaussians need to be deformed during rendering. When
dynamic objects move slowly, the second step only needs to update a
few Gaussians, allowing for quick deformation computations. How-
ever, this strategy is less effective when the objects are moving quickly.
In the future, we plan to predict deformation along with the speed and
direction of the objects. This will allow us to estimate the position of
each Gaussian in the current frame based on the speed and direction
predicted in the previous frame, thereby simplifying the selection of
Gaussians in the current frame. The third limitation is that our method
is less effective when dealing with moving shadows due to misclas-
sified of the Gaussian for reconstructing shadows. In the future, we
intend to reconstruct the lighting concurrently with the scene geome-
try, thereby improving the rendering quality of dynamic shadow.
ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of
China through Projects 62372026 and 61932003, Beijing Science and
Technology Plan Project Z221100007722004, and the National Key
R&D plan 2019YFC1521102.



REFERENCES

[1] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xi-
aogang Jin. Deformable 3d gaussians for high-fidelity monocular dy-
namic scene reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20331–20341, 2024.
1, 2, 3, 6, 7

[2] Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee Lee. Multi-scale
3d gaussian splatting for anti-aliased rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 20923–20931, 2024. 1, 2, 5, 6, 7

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George
Drettakis. 3d gaussian splatting for real-time radiance field rendering.
ACM Transactions on Graphics, 42(4), July 2023. 1, 5, 6

[4] Lili Wang, Xuehuai Shi, and Yi Liu. Foveated rendering: A state-of-the-
art survey. Computational Visual Media, 9(2):195–228, 2023. 2

[5] Guikun Chen and Wenguan Wang. A survey on 3d gaussian splatting.
arXiv preprint arXiv:2401.03890, 2024. 2

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Bar-
ron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neu-
ral radiance fields for view synthesis. In Computer Vision – ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part I, page 405–421, Berlin, Heidelberg, 2020. Springer-Verlag.
2

[7] Tianhao Wu, Fangcheng Zhong, Andrea Tagliasacchi, Forrester Cole, and
Cengiz Oztireli. D2nerf: self-supervised decoupling of dynamic and
static objects from a monocular video. In Proceedings of the 36th In-
ternational Conference on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2024. Curran Associates Inc. 2

[8] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron,
Sofien Bouaziz, Dan B Goldman, Ricardo Martin-Brualla, and Steven M.
Seitz. Hypernerf: A higher-dimensional representation for topologically
varying neural radiance fields. ACM Trans. Graph., 40(6), dec 2021. 2,
5, 6

[9] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George
Drettakis. 3d gaussian splatting for real-time radiance field rendering.
ACM Trans. Graph., 42(4):139–1, 2023. 2

[10] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei
Wei, Wenyu Liu, Qi Tian, and Wang Xinggang. 4d gaussian splatting for
real-time dynamic scene rendering. arXiv preprint arXiv:2310.08528,
2023. 2

[11] Bardienus P Duisterhof, Zhao Mandi, Yunchao Yao, Jia-Wei Liu,
Mike Zheng Shou, Shuran Song, and Jeffrey Ichnowski. Md-splatting:
Learning metric deformation from 4d gaussians in highly deformable
scenes. arXiv preprint arXiv:2312.00583, 2023. 2

[12] Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural
motion factorization for real-time dynamic view synthesis with 3d gaus-
sian splatting. arXiV, 2023. 2

[13] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas
Geiger. Mip-splatting: Alias-free 3d gaussian splatting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 19447–19456, 2024. 2, 5

[14] Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas, Michael Wim-
mer, Alexandre Lanvin, and George Drettakis. A hierarchical 3d gaussian
representation for real-time rendering of very large datasets. ACM Trans-
actions on Graphics (TOG), 43(4):1–15, 2024. 2, 5

[15] Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Zehao Zhu,
Dejia Xu, Pradyumna Chari, Suya You, Zhangyang Wang, and Achuta
Kadambi. Feature 3dgs: Supercharging 3d gaussian splatting to enable
distilled feature fields. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 21676–21685, 2024. 2

[16] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian
grouping: Segment and edit anything in 3d scenes. arXiv preprint
arXiv:2312.00732, 2023. 2

[17] Masahiro Fujita and Takahiro Harada. Foveated real-time ray tracing for
virtual reality headset. Light Transport Entertainment Research, 2014. 2

[18] Martin Weier, Thorsten Roth, Ernst Kruijff, André Hinkenjann, Arsène
Pérard-Gayot, Philipp Slusallek, and Yongmin Li. Foveated real-time
ray tracing for head-mounted displays. In Computer Graphics Forum,
volume 35, pages 289–298. Wiley Online Library, 2016. 2

[19] Matias K Koskela, Kalle V Immonen, Timo T Viitanen, Pekka O
Jääskeläinen, Joonas I Multanen, and Jarmo H Takala. Instantaneous
foveated preview for progressive monte carlo rendering. Computational

Visual Media, 4:267–276, 2018. 2
[20] Youngwook Kim, Yunmin Ko, and Insung Ihm. Selective foveated ray

tracing for head-mounted displays. In 2021 IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR), pages 413–421. IEEE,
2021. 2

[21] Nicholas T Swafford, José A Iglesias-Guitian, Charalampos Koniaris,
Bochang Moon, Darren Cosker, and Kenny Mitchell. User, metric, and
computational evaluation of foveated rendering methods. In Proceedings
of the ACM Symposium on Applied Perception, pages 7–14, 2016. 2

[22] Fabio Policarpo and Manuel M Oliveira. Relief mapping of non-height-
field surface details. In Proceedings of the 2006 symposium on Interactive
3D graphics and games, pages 55–62, 2006. 2

[23] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Sny-
der. Foveated 3d graphics. ACM transactions on Graphics (tOG),
31(6):1–10, 2012. 2, 5

[24] Michael Stengel, Steve Grogorick, Martin Eisemann, and Marcus Mag-
nor. Adaptive image-space sampling for gaze-contingent real-time ren-
dering. In Computer Graphics Forum, volume 35, pages 129–139. Wiley
Online Library, 2016. 2

[25] Eric Turner, Haomiao Jiang, Damien Saint-Macary, and Behnam Bastani.
Phase-aligned foveated rendering for virtual reality headsets. In 2018
IEEE conference on virtual reality and 3D user interfaces (VR), pages
1–2. IEEE, 2018. 2

[26] Karthik Vaidyanathan, Marco Salvi, Robert Toth, Theresa Foley,
Tomas Akenine-Möller, Jim Nilsson, Jacob Munkberg, Jon Hasselgren,
Masamichi Sugihara, Petrik Clarberg, et al. Coarse pixel shading. In
Proceedings of High Performance Graphics, pages 9–18. 2014. 2

[27] Lei Yang, Dmitry Zhdan, Emmett Kilgariff, Eric B Lum, Yubo Zhang,
Matthew Johnson, and Henrik Rydgård. Visually lossless content and
motion adaptive shading in games. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 2(1):1–19, 2019. 2

[28] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris
Wyman, Nir Benty, David Luebke, and Aaron Lefohn. Towards foveated
rendering for gaze-tracked virtual reality. ACM Transactions on Graphics
(TOG), 35(6):1–12, 2016. 2

[29] ARAUJO Helder. An introduction to the log-polar mapping. In II Work-
shop on Cibernetic Vision, December, 1996, 1996. 2

[30] V Javier Traver and Alexandre Bernardino. A review of log-polar imag-
ing for visual perception in robotics. Robotics and Autonomous Systems,
58(4):378–398, 2010. 2

[31] Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney.
Kernel foveated rendering. Proceedings of the ACM on Computer Graph-
ics and Interactive Techniques, 1(1):1–20, 2018. 2

[32] Jiannan Ye, Anqi Xie, Susmija Jabbireddy, Yunchuan Li, Xubo Yang, and
Xiaoxu Meng. Rectangular mapping-based foveated rendering. In 2022
IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages
756–764. IEEE, 2022. 2

[33] David Li, Ruofei Du, Adharsh Babu, Camelia D Brumar, and Amitabh
Varshney. A log-rectilinear transformation for foveated 360-degree video
streaming. IEEE Transactions on Visualization and Computer Graphics,
27(5):2638–2647, 2021. 2

[34] Xuehuai Shi, Lili Wang, Jian Wu, Runze Fan, and Aimin Hao. Foveated
stochastic lightcuts. IEEE Transactions on Visualization and Computer
Graphics, 28(11):3684–3693, 2022. 2

[35] David R Walton, Rafael Kuffner Dos Anjos, Sebastian Friston, David
Swapp, Kaan Akşit, Anthony Steed, and Tobias Ritschel. Beyond blur:
Real-time ventral metamers for foveated rendering. ACM Transactions
on Graphics, 40(4):1–14, 2021. 2

[36] Brooke Krajancich, Petr Kellnhofer, and Gordon Wetzstein. Towards
attention–aware foveated rendering. ACM Transactions on Graphics
(TOG), 42(4):1–10, 2023. 2

[37] Xuehuai Shi, Lili Wang, Xinda Liu, Jian Wu, and Zhiwen Shao. Scene-
aware foveated neural radiance fields. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2024. 2

[38] Nianchen Deng, Zhenyi He, Jiannan Ye, Budmonde Duinkharjav, Pra-
neeth Chakravarthula, Xubo Yang, and Qi Sun. Fov-nerf: Foveated neu-
ral radiance fields for virtual reality. IEEE Transactions on Visualization
and Computer Graphics, 28(11):3854–3864, 2022. 2, 5

[39] David Bauer, Qi Wu, and Kwan-Liu Ma. Fovolnet: Fast volume rendering
using foveated deep neural networks. IEEE Transactions on Visualization
and Computer Graphics, 29(1):515–525, 2022. 2

[40] Weikai Lin, Yu Feng, and Yuhao Zhu. Rtgs: Enabling real-time gaussian
splatting on mobile devices using efficiency-guided pruning and foveated



rendering. arXiv preprint arXiv:2407.00435, 2024. 2
[41] Linus Franke, Laura Fink, and Marc Stamminger. Vr-splatting: Foveated

radiance field rendering via 3d gaussian splatting and neural points. arXiv
preprint arXiv:2410.17932, 2024. 2

[42] Zhiming Hu, Congyi Zhang, Sheng Li, Guoping Wang, and Dinesh
Manocha. Sgaze: A data-driven eye-head coordination model for real-
time gaze prediction. IEEE Transactions on Visualization and Computer
Graphics, 25(5):2002–2010, 2019. 2

[43] Zhiming Hu, Sheng Li, Congyi Zhang, Kangrui Yi, Guoping Wang,
and Dinesh Manocha. Dgaze: Cnn-based gaze prediction in dynamic
scenes. IEEE Transactions on Visualization and Computer Graphics,
26(5):1902–1911, 2020. 2

[44] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Sny-
der. Foveated 3d graphics. ACM transactions on Graphics (tOG),
31(6):1–10, 2012. 2, 6

[45] Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander Schwing, and
Joon-Young Lee. Tracking anything with decoupled video segmentation.
In ICCV, 2023. 3

[46] Harry Nyquist. Certain topics in telegraph transmission theory. Trans-
actions of the American Institute of Electrical Engineers, 47(2):617–644,
1928. 3

[47] Runze Fan, Xuehuai Shi, Kangyu Wang, Qixiang Ma, and Lili Wang.
Scene-aware foveated rendering. IEEE Transactions on Visualization and
Computer Graphics, pages 1–10, 2024. 5, 6

[48] Zhiwen Yan, Chen Li, and Gim Hee Lee. Nerf-ds: Neural radiance fields
for dynamic specular objects. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 8285–8295,
2023. 5

[49] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei
Wei, Wenyu Liu, Qi Tian, and Xinggang Wang. 4d gaussian splatting
for real-time dynamic scene rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
20310–20320, June 2024. 6


	Introduction
	Releated Work
	3D Gaussian Splatting.
	Foveated Rendering.

	Method
	3D Gaussian Forest Representation
	3D Gaussian Forest Initialization
	3D Gaussian Forest Optimization
	HVS Models based 3D Gaussian Forest Rendering

	Experiment
	Implementation
	Comparison
	Quality
	Performance

	Ablation Studies

	User Study
	User Study Design
	Results and Discussion

	Conclusion

