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 A B S T R A C T

Facial action unit (AU) detection is a challenging task, due to the subtlety of each AU in local area and 
the correlations among AUs in global face. In recent years, the prevailing attention mechanism has been 
introduced to AU detection. However, the inherent mechanism of self-attention weight distribution has 
been rarely explored. Besides, ensemble learning is an efficient technique, but gains little attention in AU 
detection. Considering the above limitations, we propose a local self-attention constraining (LSC) network, 
by regarding the self-attention distribution of each AU as a spatial distribution, and constraining it based 
on prior knowledge so as to capture AU-related local information. Moreover, to learn correlations among 
different AU regions, we propose a global dual-directional attention (GDA) network, which adaptively learns 
global attention map from both vertical and horizontal directions. Last but not least, the two networks from 
different views of capturing patterns are assembled to integrate both advantages. Extensive experiments on 
BP4D, DISFA, and GFT benchmarks demonstrate that our methods including local self-attention constraining, 
global dual-directional attention, and multi-view ensemble all significantly surpass state-of-the-art AU detection 
works.
1. Introduction

Facial expression is a primary means of conveying human emotions. 
The analysis and recognition of expressions hold wide-ranging potential 
in emotion recognition [1] and virtual reality [2]. Defined by the facial 
action coding system (FACS) [3], a facial action unit (AU) represents 
local facial movements and describes subtle motions in expressions. 
AU detection aims to determine the activation status of each AU in a 
facial image. The identification of AUs remains challenging due to their 
subtlety and the complexity of their interrelationships.

Human faces have complex structures and can present a wide range 
of subtle movements, which allow different groups of AUs to convey 
diverse emotions and intentions. Fig.  1(a) illustrates that AUs with 
opposite semantics, like AU 12 (lip corner puller) and AU 15 (lip 
corner depressor), still can co-occur. During the dynamic transition 
from a smile to a sad expression, an intermediate stage may incor-
porate such types of AUs. The subtlety of AUs presents difficulties 
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for their identification, necessitating the development of detailed and 
dynamic modeling techniques. On the other hand, most AUs do not 
exist independently, and they exhibit complex interrelations and con-
straints. Certain AUs often occur together. For instance, as shown in 
Fig.  1(c), a smile typically activates both AU 12 and AU 6 (cheek 
raiser) simultaneously. The modeling of relationships among AUs is also 
crucial.

Recently, vision transformers have made significant strides in var-
ious computer vision tasks. To accurately detect highly subtle AUs, a 
few studies have integrated transformers into AU detection to capture 
the AU relationships [4]. Besides, Li et al.’s work [5] explores the 
convolutional attention weight distribution, which greatly improves 
the performance. However, the research about inherent mechanism of 
transformer attention (also known as self-attention) weight distribution 
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data mining, AI training, and similar technologies. 
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Fig. 1. Example expressions composed of different facial AUs: (a) subtle mouth corner 
movements via AU 12 (lip corner puller) and AU 15 (lip corner depressor); (b) multiple 
eyebrow movements depicted by AU 1 (inner brow raiser), AU 2 (outer brow raiser), 
and AU 4 (brow lowerer); (c) a typical Duchenne smile by combining AU 6 (cheek 
raiser) with AU 12; (d) a sad expression, conveyed through AU 1, AU 4, and AU 
15. The local self-attention constraining (LSC) network captures the subtlety of local 
AUs, and the globa dual-directional attention (GDA) network focuses on capturing 
the AU relationships. At last, two networks are assembled as Ensemble Self-attention 
Constraining and Dual-directional Attention (ESCDA).

is neglected. For example, although Jacob et al. [4] uses transformer, 
it only imposes constraints on convolutional attention.

Another line of solution involves modeling the relationships among 
AUs. There are efforts in proposing adaptive spatio-temporal graph 
convolutional networks to reason each AU’s independent pattern, and 
employing relation learning layers to capture different AU relations [6]. 
However, these approaches ignore the modeling of long-range depen-
dencies among facial regions. Long-range dependencies denote that 
some facial distant AUs have positive correlations (co-occurrence) or 
negative correlations (mutual exclusion). For example, surprised ex-
pression often has the co-occurrences of AU 1, AU 2, AU 5, and AU 
26, where AU 1 and AU 2 are in the eyebrow region, and AU 26 is in 
the chin region.

To tackle the above issues, we propose an Ensemble Self-attention
Constraining and Dual-directional Attention (ESCDA) method, which 
combines a local self-attention constraining (LSC) network to model 
self-attention distribution and a global dual-directional attention (GDA) 
network to capture long-range relationships. Specifically, we enhance 
the feature extraction capacity of MobileFaceNet [7] by integrating co-
ordinate attention [8] and mixed depthwise convolution (MixConv) [9] 
as the backbone. In LSC, we develop a self-attention constraining head 
for each AU-specific branch, by regarding the self-attention distribution 
as a spatial distribution, and constraining it via prior knowledge so 
as to capture AU-related local information while long-range relational 
modeling ability can be preserved. Furthermore, in GDA, we design a 
spatial dual-directional attention head, which adaptively learns global 
attention map from both vertical and horizontal directions. By exploit-
ing dual-directional information flows within the spatial domain, the 
simultaneous prediction of multiple AUs is facilitated. This method can 
capture not only long-distance dependencies between regions but also 
image’s global context.

Additionally, we observe that recent works tend to train deeper and 
more complex networks. However, there have been few works explored 
effective ensemble methods for AU detection task. Allen-Zhu et al. [10] 
confirmed through experiments and theoretical analysis that randomly 
initialized neural networks may focus on features from different per-
spectives. Consequently, ensemble models, which can simultaneously 
attend to multi-view features, generally achieve improved performance. 
2 
Inspired by Allen-Zhu et al. [10], we adopt a multi-view ensemble 
method to integrate the strengths of both models. However, instead 
of using randomly initialized neural networks, two models from dif-
ferent views specifically designed for AU detection were employed. In 
particular, we train both models in parallel and subsequently average 
their label predictions. Multi-view ensemble enables our method to 
more comprehensively capture data characteristics from both local and 
global area [11], and thus improves the generalization ability.

The main contributions of this work include:

• We propose a novel local self-attention constraining network, 
which constrains self-attention distribution based on prior loca-
tion knowledge to effectively capture local information associated 
with AUs.

• We propose a novel global dual-directional attention network, 
which captures the correlations among multiple AUs across the 
face by learning attentions from two directions.

• We introduce a multi-view ensemble method to merge the
strengths of both models, boosting their abilities to extract both 
local and global features.

• Extensive experimental results demonstrate that our methods in-
cluding single models and ensemble model all achieve state-
of-the-art performance on challenging BP4D, DISFA, and GFT 
datasets, particularly outperforming previous works significantly 
on DISFA and GFT.

2. Related work

We review the previous approaches that are relevant to our work, 
including self-attention based AU detection, regional learning based AU 
Detection, and ensemble learning in computer vision.

2.1. Self-attention based AU detection

In recent years, vision transformers with self-attention mechanism 
have revolutionized the field of computer vision. Since the self-attention
can effectively capture long-range dependencies and learn rich con-
textual information, a few works have incorporated it to precisely 
detect subtle AUs. Yuan et al. [12] used a frozen pre-trained Vi-
sion Transformer combined with lightweight modules for efficient 
feature learning. Li et al. [13] introduced the self-attention into AU 
detection task, which is learned through the AU label supervision. 
Jacob et al. [4] captured the relationship between different AUs via 
self-attention. However, the distribution of self-attention weights has 
semantic characteristic, and such underlying mechanism has been 
overlooked.

In contrast, we propose to regard the self-attention distribution of 
each AU as a spatial pattern, and exploit prior knowledge about AU 
locations to constrain the learning of self-attention.

2.2. Regional learning based AU detection

AU refers to facial local muscle movements, and thus extracting 
its features requires accurately locating associated areas. Considering 
the challenge of capturing AU features, Jaiswal et al. [14] used con-
volutional neural networks (CNNs) to extract features of each AU from 
cropped regions of interest (ROIs) and masks. Zhao et al. [15] imple-
mented convolution layers that consist of multiple independent blocks, 
where each block contains its own convolution filters to extract fea-
tures. Ma et al. [16] defined bounding boxes for AUs using landmarks 
and incorporated general object detection backbone into AU detection. 
Shao et al. [17] adaptively learned channel-level and spatial attentions 
from AU detection supervisions, while Liu et al. [18] adaptively up-
dated AU correlation graphs by efficiently leveraging multi-level AU 
motion and emotion features extracted at different network stages. Ge 
et al. [19] performed region-level, pixel-level, and channel-level feature 
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Fig. 2. The structure of our ESCDA framework (zoom in for a better view). An input image is initially processed by the single-branch global dual-directional attention network 
and the 𝑚-branch local self-attention constraining network. Both networks have the same backbone structure, the same AU detection loss 𝑢, and similar AU classifier structure 
composed of a global depthwise convolutional layer and a linear layer. The outputs from both, �̂�𝐿 and �̂�𝐺 , are averaged to produce the final prediction �̂�. ‘‘⊗’’ and ‘‘⊕’’ denote 
element-wise multiplication and addition, respectively; ‘‘⊙’’ denotes matrix multiplication; ‘‘C’’, ‘‘S’’, and ‘‘E’’ in a circle denote concatenation, split, and expansion, respectively.
learning. Chen et al. [20] embedded 3D manifold information into 2D 
convolutions. However, convolution based methods struggle to capture 
long-range AU information, and positional information, which can help 
the model focus on the key regions of input images, is often neglected 
by channel attention based methods.

Different from these works, we propose the global dual-directional 
attention network to learn global attentions adaptively from both verti-
cal and horizontal directions, so as to capture long-distance dependen-
cies among facial regions.

2.3. Ensemble learning in computer vision

Ensemble learning is a technique that seeks better prediction per-
formance by combining the predictions from multiple models. It has 
been introduced to the field of computer vision. For example, Moghimi 
et al. [21] proposed a method that merges boosting with deep learning, 
which utilizes the least squares objective function. Li et al. [22] devel-
oped a sparse deep stacking network for image classification, which 
employed mixed-norm regularization to learn sparse representations.

Recently, ensemble learning has gained attention in AU detection. 
Jiang et al. [23] combined models according to the highest F1 scores 
for each AU. Jeong et al. [24] employed the Bagging method by 
training each classifier with a subset of the data and utilizing soft 
voting to amalgamate predictions from various models. Although these 
works utilize ensemble learning to boost model performance, they 
do not provide a detailed justification for its effectiveness. AAR [6], 
composed of an adaptive attention regression network and an adap-
tive spatio-temporal graph convolutional network, is equivalent to the 
stacking method of ensemble learning. Our method is to calculate 
the average output of two not-too-complex networks, but the effect is 
significantly improved. This may inspire subsequent works to focus on 
multi-perspective ensemble.
3 
3. Methodology

Given an image with the size of 3 × 𝑙 × 𝑙, our main goal is to 
estimate the AU occurrence probabilities �̂� = (�̂�(1),… , �̂�(𝑚)), in which 
𝑚 is the number of evaluated AUs. The architecture of our ESCDA 
framework is shown in Fig.  2. Initially, the image is fed into the 
local self-attention constraining (LSC) network and the global dual-
directional attention (GDA) network to extract facial information from 
local and global perspective, respectively. Since model ensemble can 
significantly enhance AU detection performance by learning features 
from various perspectives, the outputs from these networks are further 
averaged to derive the final prediction.

3.1. Local self-attention constraining

The structure of LSC network is illustrated in the bottom part of 
Fig.  2. Since the next transformer block (NTB) [25] achieves a better 
trade-off between latency and accuracy, we adopt it as the self-attention 
module and apply self-attention constraints to it. The input image first 
goes through the backbone for feature extraction, then 𝑚 branches are 
followed. Each branch comprises a next transformer block, a global 
depthwise convolutional layer, and a linear layer to identify a certain 
AU in local regions.

3.1.1. Backbone
Our backbone is developed from MobileFaceNet [7], which is a 

lightweight network with superior performance in face detection task. 
In particular, the input first passes through a convolutional layer to ex-
tract preliminary features, and then proceeds to depthwise convolution 
and enhanced depth-separable convolution for shallow feature extrac-
tion. Within the enhanced depth-separable convolution, MixConv [9] 
and coordinate attention [8] are introduced. MixConv enhances feature 
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Fig. 3. The definition and visualization for the positions of AU centers, which are designed for a face aligned such that two eye centers are horizontal [5,26]. For each AU, two 
centers are determined based on two associated facial landmarks. A red dotted line is used to indicate ‘‘scale’’, representing the distance between the inner corners of two eyes.
representation by integrating multi-scale convolution, whereas coordi-
nate attention boosts the modeling of long-range dependencies. Follow-
ing shallow feature extraction, deeper feature extraction is achieved by 
stacking two types of enhanced depth-separable convolutions. We em-
ploy three levels of residual and non-residual enhanced depth-separable 
convolutions, to downsample the feature map sizes successively to 1/2, 
1/4, and 1/8, while simultaneously increasing the number of channels.

3.1.2. Adaptive constraining on self-attention distribution
To address the shortcomings of self-attention in capturing local 

features, we propose to apply self-attention constraining to the NTB 
to assist LSC network in capturing local feature dependencies. As 
illustrated in Fig.  3 , correlated landmarks can accurately locate the 
central area of each AU based on prior positional relationships [26]. To 
leverage such prior knowledge, we predefine a mask 𝐌𝑖 for the 𝑖th AU, 
which has two highlighted sub-centers (�̄�𝑖(1), �̄�𝑖(1)) and (�̄�𝑖(2), �̄�𝑖(2)). We 
initially create the predefined mask �̃�𝑖(1) for one sub-center (�̄�𝑖(1), �̄�𝑖(1))
using a Gaussian distribution with standard deviation 𝛿. The value at 
location (𝑎, 𝑏) is defined as 

𝑀𝑖𝑎𝑏(1) = exp(−
(𝑎 − �̄�𝑖(1))2 + (𝑏 − �̄�𝑖(1))2

2𝛿2
). (1)

Then, we combine �̃�𝑖(1) and �̃�𝑖(2) by selecting the maximum value 
at each location (𝑎, 𝑏): 
𝑀𝑖𝑎𝑏 = max(𝑀𝑖𝑎𝑏(1),𝑀𝑖𝑎𝑏(2)) ∈ (0, 1]. (2)

In �̃�𝑖, the region of interest (ROI) for the 𝑖th AU comprises positions 
with values greater than 0, while disregarding other positions with zero 
values. However, this could potentially result in losing some valuable 
underlying information. To give a certain degree of importance to areas 
outside the ROI, we introduce a learnable parameter 𝜖𝑖: 

𝑀𝑖𝑎𝑏 =
𝑀𝑖𝑎𝑏 + 𝜖𝑖
1 + 𝜖𝑖

∈ (0, 1], (3)

where 𝜖𝑖 ≥ 0, and is proportional to the importance of the area outside 
the ROI.

On the other hand, the scaled dot-product attention weight in the 
self-attention mechanism [27] is calculated as 

𝐀′
𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(

𝐐𝑖𝐊𝑇
𝑖

√

𝑑′
), (4)

where 𝐐𝑖 ∈ R𝑘′×𝑛′×𝑑′ , 𝐊𝑖 ∈ R𝑘′×𝑛′×𝑑′ , 𝐀′
𝑖 ∈ R𝑘′×𝑛′×𝑛′ , and Softmax 

function is denoted as 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(⋅). Afterward, we derive the constrained 
scaled dot-product attention weight by element-wise multiplying the 
obtained predefined mask 𝐌𝑖 with 𝐀′

𝑖 : 

𝐀 = 𝐀′ ⊗𝐌 , (5)
𝑖 𝑖 𝑖
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in which ⊗ denotes elementwise multiplication. Constrained 𝐀𝑖 has 
multiple attention channels to derive features from AU-related regions. 
Then, the self-attention process is defined as 
𝑆𝐴(𝐐𝑖,𝐊𝑖,𝐕𝑖) = 𝐀𝑖𝐕𝑖, (6)

where 𝐕𝑖 ∈ R𝑘′×𝑛′×𝑑′ .
We further combine the self-attention 𝑆𝐴(⋅) from multiple heads by 

multiplying by a learnable weight matrix 𝐖𝑀  to create the multi-head 
self-attention (MHSA). Afterward, a pointwise convolutional layer and 
a multi-head convolutional attention (MHCA) [25] block are followed, 
in which the output is concatenated with the output of MHSA to fuse 
information. Finally, a multi-layer perceptron (MLP) layer is employed 
for further feature learning.

3.1.3. AU detection
After NTB, we use an AU classifier composed of a global depthwise 

convolutional layer and a linear layer in each AU branch to obtain the 
predicted AU occurrence probability �̂�𝐿. The weighted AU detection 
loss [6] we use is defined as 

𝑢 = −
𝑚
∑

𝑖=1
𝑤(𝑖)[𝑣(𝑖)𝑝(𝑖) log �̂�(𝑖)𝐿 + (1 − 𝑝(𝑖)) log(1 − �̂�(𝑖)𝐿 )], (7)

in which 𝑤(𝑖), 𝑣(𝑖), and 𝑝(𝑖) denote the weight, occurrence weight, and 
the ground-truth occurrence probability of the 𝑖-AU, respectively, and 
𝑝(𝑖) is 1 for occurrence or 0 for non-occurrence. Most AU datasets [28,
29] exhibit two types of data imbalance issues: certain AUs have higher 
occurrence rates compared to others, and each AU has a higher non-
occurrence rate than occurrence rate. To alleviate the issues associated 
with data imbalance, 𝑤(𝑖) and 𝑣(𝑖) are defined as 

𝑤(𝑖) = 𝑛
𝑛(𝑖)𝑜𝑐𝑐

∕
𝑚
∑

𝑘=1

𝑛
𝑛(𝑘)𝑜𝑐𝑐

, 𝑣(𝑖) =
𝑛 − 𝑛(𝑖)𝑜𝑐𝑐
𝑛(𝑖)𝑜𝑐𝑐

, (8)

where 𝑛(𝑖)𝑜𝑐𝑐 represents the number of occurrences of the 𝑖th AU, while 𝑛
denotes the total number of images in the training dataset.

3.2. Global dual-directional attention

To capture the relationships and interactions between global area 
of AUs, channel attention is divided into two one-dimensional feature 
coding processes, which aggregate features along two spatial directions, 
allowing to get remote dependencies in one spatial direction while 
maintaining position information in the other spatial direction. The 
linear global depthwise convolution adopted in GDA can extract de-
tailed features from various areas of the face effectively. As a result, our 
GDA network establishes long-range dependencies between different 
AU areas through the dual-directional attention mechanism, realizing 
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the fusion and propagating of AU information on a global scale. As 
illustrated in the upper part of Fig.  2, the input is passed through the 
backbone to generate a feature map, which is then multiplied by the 
attention map generated through the dual-directional attention module. 
Finally, the prediction result is obtained through an AU classifier. 
Except for a single AU classifier to predict all AUs, the backbone, 
AU classifier, and AU detection loss 𝑢 within the GDA network are 
identical to their counterparts in the LSC network.

Since coordinate attention [8] simultaneously captures long-distance
dependencies in both the height and width directions, we incorporate it 
into the dual-directional attention module. Initially, we transform the 
input feature map in both vertical and horizontal directions to extract 
directional features. Note that we use global depthwise convolution 
instead of average pooling. This is because global depthwise convo-
lution can adaptively extract global features from feature maps using 
learnable convolution kernels, enabling the learning of a more efficient 
global feature representation. After concatenating vertical and horizon-
tal features and processing them through pointwise convolution, they 
are split, and pointwise convolution is then applied to generate vertical 
and horizontal attention maps. Finally, we perform an element-wise 
multiplication of the expanded attention maps to obtain a new attention 
map. This new attention map will be multiplied with the feature map 
to adaptively learn the global AU relationship.

3.3. Multi-view ensemble

When learning multi-view features, there are alignment issues due 
to differences between the global and local features of AUs. Ensem-
ble learning allows the final model to learn features from different 
perspectives. Allen-Zhu et al. [10] offered a theoretical foundation 
that models trained independently through averaging can effectively 
capture multi-view features. Such multi-view ensemble contributes to 
the target variable, and thus enhances the test accuracy.

Specifically, given data 𝑋 and label 𝑦 from the training set , we 
have 𝐾 = �̃�(1) models {𝐹 [𝓁]}𝓁∈[𝐾], independently trained for 𝑇 =
𝑂( 𝑝𝑜𝑙𝑦(𝑘)𝜂 ) iterations. The ensemble model 𝐺 is defined as 

𝐺(𝑋) =
�̃� (1)
𝐾

∑

𝓁

𝐹 [𝓁](𝑋). (9)

Here, �̃� (1) represents constant time complexity, and the entire en-
semble process essentially is averaging the outputs of a few indepen-
dently trained models. Then, in training set, we have the following 
formulations with probability at least 1 − 𝑒−𝛺(log2𝑘): 
(𝑋, 𝑦) ∈ , 𝑖 ∈ [𝑘]∖{𝑦} ∶ 𝐺𝑦(𝑋) > 𝐺𝑖(𝑋), (10a)

that is, for each sample in the training data, the score of the correct 
category exceeds those of all other categories. And in test set, we have: 

Pr
(𝑋,𝑦)∼𝐷

[

∃𝑖 ∈ [𝑘]∖{𝑦} ∶ 𝐺𝑦(𝑋) < 𝐺𝑖(𝑋)
]

≤ 0.001𝜇. (10b)

This indicates that under the test distribution 𝐷, the probability of 
misclassification is strictly controlled at a very low level, thereby 
ensuring the model’s generalization performance. The detailed proof 
of this theorem can be seen in  [10].

Not only does Eq. (10a) ensure that the ensemble model guarantees 
correct classification on the training set, but also Eq. (10b) ensures that 
the ensemble model achieves high generalization performance on the 
test set. Additionally, the ensemble requires only a small number 𝐾 =
�̃�(1) of individually trained models. In Allen-Zhu et al.’s work [10], 
the fundamental reason for the validity of the theorem lies in the 
fact that these ‘‘lottery winning sets’’ , which are the appropriately 
initialized or selected models, enabling to achieve high performance, 
are generated based on the random initialization of the neural network.

AU detection not only requires attention to local muscle movements 
but also necessitates integrating the relationships among global regions. 
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In our work, unlike Allen-Zhu et al. [10] randomly initializing neural 
networks to generate lottery winning sets, we intentionally designed 
two models from local and global views to accommodate different lot-
tery winning sets for the AU task. The LSC primarily correspond to the 
local features of the face, that is, those subtle yet discriminative local 
variations; Whereas the GDA encompass the global structural informa-
tion of the face and the interrelationships between different regions. 
When we employ the ensemble learning averaging strategy to fuse 
the outputs of these two models, it essentially takes the union of the 
two winning sets, ensuring that all important features are sufficiently 
captured. 

After we obtain the prediction �̂�𝐿 of the LSC network and the 
prediction ̂𝐩𝐺 of the GDA network, the final AU occurrence probabilities 
�̂� is calculated as �̂� = (�̂�𝐿 + �̂�𝐺)∕2.

4. Experiments

4.1. Datasets and settings

4.1.1. Datasets
Our ESCDA is evaluated on three benchmark datasets, in terms of 

BP4D [28], DISFA [29], and GFT [30].

• BP4D comprises 23 female and 18 male participants, each in-
volved in 8 sessions. It contains approximately 140,000 frames, 
each annotated for the occurrence or non-occurrence of specific 
AUs, in addition to 49 facial landmarks. Our evaluation, adhering 
to settings in [26], focuses on 12 AUs (1, 2, 4, 6, 7, 10, 12, 14, 15, 
17, 23, and 24) through a subject-exclusive 3-fold cross-validation 
process, allocating two folds for training and one for testing.

• DISFA contains 27 videos, captured from 12 females and 15 males, 
each including 4,845 frames. Each frame is annotated with AU 
intensities on a six-point ordinal scale ranging from 0 to 5, and 
includes 66 facial landmarks. This dataset has a more severe data 
imbalance problem than BP4D dataset.

• GFT encompasses 96 subjects divided into 32 three-subject groups, 
engaging in unscripted conversations. Each subject is recorded in 
a video featuring mostly moderate out-of-plane poses. Each video 
frame is annotated with 10 AUs (1, 2, 4, 6, 10, 12, 14, 15, 23, and 
24) and 49 facial landmarks. We follow the official partitions [30], 
using 78 subjects with around 108,000 frames for training, and 18
subjects with around 24,600 frames for testing.

4.1.2. Implementation details
Each face image is aligned to 3 × 200 × 200 size through similarity 

transformation based on facial landmarks. For training data augmen-
tation, images are randomly cropped to 3 × 176 × 176, resized to 
3 × 112 × 112 for input into our networks, and subjected to random 
mirroring and color jittering for contrast and brightness adjustments. 
The crop size 𝑙, the dimension parameters 𝑐 and ℎ, and the standard 
deviation 𝛿 are set as 112, 512, 7, and 3, respectively. The number of 
AUs 𝑚 is 12 for BP4D, 8 for DISFA, and 10 for GFT.

We implement our LSC and GDA using PyTorch. The backbone 
networks of both LSC and GDA are pretrained on MS-Celeb-1M dataset
[31]. Then, both networks are trained using identical experimental 
configurations, including being trained for up to 20 epochs using the 
AdamW optimizer, employing a cosine decay learning rate scheduler, 
a 5-epoch linear warm-up, an initial learning rate of 3.2 × 10−2∕256
multiplying the mini-batch size, a weight decay of 0.05, and gradient 
clipping with a max norm of 3.0. LSC and GDA can be simultane-
ously trained, in which we select the best average predictions as the 
prediction results of our ensemble model ESCDA.



Z. Shao et al. Pattern Recognition 169 (2026) 111904 
Table 1
F1-frame results for 12 evaluated AUs on BP4D [28]. The results of previous methods are reported in original papers.
 AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg  
 DRML [15] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3 
 EAC-Net [5] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9 
 ARL [17] 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1 
 JÂA-Net [26] 53.8 47.8 58.2 78.5 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4 
 AU R-CNN [16] 50.2 43.7 57.0 78.5 78.5 82.6 87.0 67.7 49.1 62.4 50.4 49.3 63.0 
 AAR [6] 53.2 47.7 56.7 75.9 79.1 82.9 88.6 60.5 51.5 61.9 51.0 56.8 63.8 
 Jacob et al. [4] 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2 
 CISNet [32] 54.8 48.3 57.2 76.2 76.5 85.2 87.2 66.2 50.9 65.0 47.7 56.5 64.3 
 Chang et al. [33] 53.3 47.4 56.2 79.4 80.7 85.1 89.0 67.4 55.9 61.9 48.5 49.0 64.5 
 KS [34] 55.3 48.6 57.1 77.5 81.8 83.3 86.4 62.8 52.3 61.3 51.6 58.3 64.7 
 SMA-ViT [35] 52.7 45.6 59.8 83.8 79.2 83.5 87.2 64.0 54.1 61.2 52.6 58.3 65.2 
 AUNet [36] 58.0 48.2 62.4 76.4 77.5 83.4 88.5 63.3 52.0 65.5 52.1 52.3 65.0 
 MGRR-Net [19] 52.6 47.9 57.3 78.5 77.6 84.9 88.4 67.8 47.6 63.3 47.4 51.3 63.7 
 Liu et al. [18] 57.8 48.8 59.4 79.1 78.8 84.0 88.2 65.2 56.1 63.8 50.8 55.2 65.6 
 LSC 54.9 48.8 61.3 77.2 76.8 84.4 86.9 58.6 53.4 65.1 50.7 51.9 64.2 
 GDA 53.3 42.3 58.6 78.3 76.6 83.9 88.4 65.0 54.5 62.2 51.0 56.4 64.2 
 ESCDA 56.5 44.5 59.6 79.4 77.4 84.7 88.7 64.9 57.0 65.0 52.5 55.6 65.5 
Table 2
F1-frame results for 8 evaluated AUs on DISFA [29]. The results of previous methods 
are reported in original papers.
 AU 1 2 4 6 9 12 25 26 Avg  
 DRML [15] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7 
 EAC-Net [5] 41.5 26.4 66.4 50.7 8.5 89.3 88.9 15.6 48.5 
 AU R-CNN [16] 32.1 25.9 59.8 55.3 39.8 67.7 77.4 52.6 51.3 
 ARL [17] 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7 
 SMA-ViT [35] 51.2 49.3 64.7 48.3 50.6 87.6 85.1 61.2 62.2 
 KS [34] 53.8 59.9 69.2 54.2 50.8 75.8 92.2 46.8 62.8 
 JÂA-Net [26] 62.4 60.7 67.1 41.1 45.1 73.5 90.9 67.4 63.5 
 AAR [6] 62.4 53.6 71.5 39.0 48.8 76.1 91.3 70.6 64.2 
 Chang et al. [33] 60.4 59.2 67.5 52.7 51.5 76.1 91.3 57.7 64.5 
 CISNet [32] 48.8 50.4 78.9 51.9 47.1 80.1 95.4 65.0 64.7 
 AUNet [36] 60.3 59.1 69.8 48.4 53.0 79.7 93.5 64.7 66.1 
 MGRR-Net [19] 61.3 62.9 75.8 48.7 53.8 75.5 94.3 73.1 68.2 
 Liu et al. [18] 62.0 65.7 74.5 53.2 43.1 76.9 95.6 53.1 65.5 
 LSC 67.1 62.4 68.8 51.3 51.8 75.6 94.9 60.2 66.5 
 GDA 68.1 62.3 70.4 52.8 55.4 76.4 93.5 67.6 68.3 
 ESCDA 65.3 66.7 72.1 56.4 55.1 77.6 94.9 68.6 69.6 

4.1.3. Evaluation metrics
We utilize a widely used metric, known as frame-based F1-score (F1-

frame). It is defined as 𝐹1 = 2𝑃𝑅∕(𝑃 +𝑅), where 𝑃  stands for precision, 
and 𝑅 represents recall. Additionally, we present the average F1-frame 
results across all AUs, abbreviated as Avg. The F1-frame results for 
subsequent sections are all expressed in percentages, albeit without the 
‘‘%’’ symbol.

4.2. Comparison with state-of-the-art methods

Our ESCDA is compared against state-of-the-art AU detection meth-
ods under the same evaluation setting, including DRML [15], EAC-
Net [5], ARL [17], AU R-CNN [16], JÂA-Net [26], Jacob et al. [4], 
AAR [6], CISNet [32], Chang et al. [33], KS [34], SMA-ViT [35], 
TCAE [37], Ertugrul et al. [38], AU-Net [36], MGRR-Net [19], and 
Liu et al. [18].  All these methods are based on deep learning, most 
of which are relevant to our approach in terms of self-attention and 
regional learning. Table  1 and Table  2 present the results for individual 
AUs and the overall average results. We can see that our technique 
achieves consistently better results than state-of-the-art methods on 
BP4D, DISFA and GFT, as indicated by higher average F1-frame.

4.2.1. Evaluation on BP4D
As demonstrated in Table  1, without model ensemble, our pro-

posed LSC and GDA methods already outperform most state-of-the-art 
approaches. For instance, LSC achieves higher average F1-frame than 
recent self-attention based work Jacob et al. and GDA achieves higher 
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Table 3
F1-frame results for 10 evaluated AUs on GFT [30]. The results of EAC-Net [5] and 
ARL [17] are reported in [26].
 AU 1 2 4 6 10 12 14 15 23 24 Avg  
 EAC-Net [5] 15.5 56.6 0.1 81.0 76.1 84.0 0.1 38.5 57.8 51.2 46.1 
 TCAE [37] 43.9 49.5 6.3 71.0 76.2 79.5 10.7 28.5 34.5 41.7 44.2 
 ARL [17] 51.9 45.9 13.7 79.2 75.5 82.8 0.1 44.9 59.2 47.5 50.1 
 Ertugrul et al. [38] 43.7 44.9 19.8 74.6 76.5 79.8 50.0 33.9 16.8 12.9 45.3 
 JÂA-Net [26] 46.5 49.3 19.2 79.0 75.0 84.8 44.1 33.5 54.9 50.7 53.7 
 AAR [6] 66.3 53.9 23.7 81.5 73.6 84.2 43.8 53.8 58.2 46.5 58.5 
 LSC 66.2 58.7 49.4 85.9 77.4 84.8 30.0 52.6 59.7 53.0 61.8 
 GDA 62.7 57.8 62.4 84.8 81.1 85.4 29.0 51.3 58.5 53.5 62.7 
 ESCDA 65.5 58.9 54.6 87.0 79.6 86.2 31.7 53.7 60.5 52.7 63.0 

average F1-frame than recent regional learning based works such as 
JÂA-Net and AAR. These results highlight the effectiveness of our 
method in capturing local AU features and global AU relationships, 
respectively. After assembling the two models, our ESCDA outperforms 
all other methods, though it performs slightly worse than Liu et al., 
and the performance across AUs is more balanced than most methods. 
This validates the effectiveness of multi-view ensemble, in which our 
ensemble model can effectively capture both local-view features from 
local AU areas and global-view features of global AU relationships by 
averaging the predictions. Our method is a simple but effective solution 
to the challenging AU detection task.

4.2.2. Evaluation on DISFA
As shown in Table  2, our LSC and GDA both significantly outper-

form all existing methods, and the performance of our ensemble model 
ESCDA is further improved, achieving a 1.4 margin in terms of average 
F1-frame over the best existing method MGRR-Net. Note that the data 
imbalance issue in the DISFA dataset is more severe compared to that 
of BP4D, leading to performance fluctuations in previous works such 
as AU-GCN. In this challenging case, our models including LSC, GDA, 
and ESCDA all exhibit strong and stable performance among different 
AUs. This can be attributed to our proposed local self-attention con-
straining, global dual-directional attention, and multi-view ensemble. 
Especially, multi-view ensemble is beneficial for learning more robust 
and comprehensive features, enabling our ESCDA to effectively handle 
the challenges posed by data imbalance.

4.2.3. Evaluation on GFT
Table  3 presents the F1-frame results for the GFT benchmark. It can 

be seen that our methods including LSC, GDA, and the ensemble model 
ESCDA all significantly outperform previous works. Compared to BP4D 
and DISFA, GFT images display moderate deviations from the frontal 
plane. In this challenging case, ESCDA achieves strong performance 
with an average F1-frame score of 63.0.
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Table 4
Floating point operations (FLOPs) and the number of parame-
ters (#Params.) for different methods during the detection of 
12 AUs.
 Method FLOPs #Params. 
 DRML [15] 0.9G 56.9M  
 EAC-Net [5] 18.8G 337.5M  
 JÂA-Net [26] 8.8G 25.2M  
 AAR [6] 10.2G 7.2M  
 CISNet [32] 4.8G 22.4M  
 GDA 4.5G 4.1M  
 LSC 13.7G 27.2M  

Table 5
F1-frame results for 12 evaluated AUs from different variants of ESCDA on BP4D [28]. 
The best results are highlighted in bold, and the second best results are highlighted by 
an underline.
 AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg  
 LS 55.6 45.7 56.1 76.6 74.6 82.7 88.1 61.0 54.3 65.3 49.9 50.6 63.4 
 LSC(𝑓𝑖𝑥) 51.7 44.9 59.4 77.2 76.3 82.8 87.1 61.5 55.8 62.4 53.2 56.2 64.0 
 LSC 54.9 48.8 61.3 77.2 76.8 84.4 86.9 58.6 53.4 65.1 50.7 51.9 64.2 
 UA 51.7 48.0 61.7 78.0 76.4 83.1 88.3 58.3 54.8 63.5 48.4 52.6 63.7 
 GDA 53.3 42.3 58.6 78.3 76.6 83.9 88.4 65.0 54.5 62.2 51.0 56.4 64.2 
 ESCDA-V 52.1 43.4 60.6 78.4 78.5 84.6 88.5 66.5 55.4 63.1 50.9 56.9 64.9 
 ESCDA 56.5 44.5 59.6 79.4 77.4 84.7 88.7 64.9 57.0 65.0 52.5 55.6 65.5 

4.2.4. Discussion about model complexity
In Table  4, the floating point operations (FLOPs) and the number 

of parameters (#Params.) of different methods for 12 AUs are shown. 
Many existing methods do not release their code or report metrics such 
as FLOPs and the number of parameters. Therefore, we compare our 
approach only with those methods that have made their code or model 
complexity publicly available. As we can see, GDA has the fewest model 
parameters compared to previous methods, and its FLOPs are the sec-
ond smallest, only slightly higher than DRML [15]. Despite this, GDA 
delivers significant performance improvements, demonstrating that the 
dual-directional attention module offers both low computational cost 
and high efficiency. LSC has more parameters and FLOPs comparable to 
earlier works like JÂA-Net [26] and CISNet [32]. Inevitably, its multi-
branch structure and next transformer blocks lead to increased memory 
and time costs.

However, we believe that sacrificing computation for performance 
improvements is worthwhile, as AU detection is a micro-action-sensitive
task where enhancing accuracy is both challenging and crucial [6]. 
Previous works like Deng et al. [39] proposed a multimodal fusion 
framework that integrates visual and audio features, utilizing various 
deep learning models for feature integration. Although the model 
needs to handle multimodal inputs and long-sequence training, its 
performance significantly outperforms that of unimodal approaches. 
Additionally, the computational overhead can be mitigated by advance-
ments in hardware, and processing can be handled on cloud servers 
with results delivered to clients. In the future, we plan to reduce 
the model’s complexity by incorporating more efficient networks and 
optimizing the multi-branch architecture.

4.3. Ablation study

In this section, we explore the significance of each key component 
within our ESCDA framework. The F1-frame results for different ESCDA 
variants on BP4D are displayed in Table  5, with the structure of each 
variant detailed in Table  6.

4.3.1. Adaptive constraining on self-attention distribution
The baseline LS creates a branch containing an NTB for each AU. 

Furthermore, LSC(𝑓𝑖𝑥) and LSC apply self-attention constraining within 
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Table 6
The structures of different variants of our ESCDA. 𝐁: enhanced MobileFaceNet back-
bone. 𝐍: vanilla NTB. 𝐍𝐜: self-attention constraining in NTB. 𝐌(𝑓𝑖𝑥): predefined mask 𝐌𝑖
with fixed 𝜖𝑖 = 0 for the 𝑖-th AU. 𝐌(𝑎𝑑𝑎): predefined mask 𝐌𝑖 with adaptively learned 𝜖𝑖
for the 𝑖-th AU. 𝐀𝐮: unidirectional attention in global face. 𝐀𝐝: dual-directional attention 
in global face. 𝐂: AU classifier. 𝐄𝐯: model ensemble using the voting method. 𝐄𝐚: model 
ensemble using the averaging method.
 Method 𝐁 𝐍 𝐍𝐜 𝐌(𝐟 𝐢𝐱) 𝐌(𝐚𝐝𝐚) 𝐀𝐮 𝐀𝐝 𝐂 𝑢 𝐄𝐯 𝐄𝐚 
 LS √ √ √ √  
 LSC(𝑓𝑖𝑥) √ √ √ √ √  
 LSC √ √ √ √ √  
 UA √ √ √ √  
 GDA √ √ √ √  
 ESCDA-V √ √ √ √ √ √ √  
 ESCDA √ √ √ √ √ √ √  

Table 7
F1-frame results for 8 evaluated AUs from different variants of ESCDA on DISFA [29]. 
The best results are highlighted in bold, and the second best results are highlighted by 
an underline.
 AU 1 2 4 6 9 12 25 26 Avg  
 LS 64.6 54.6 58.8 54.3 37.3 77.7 96.2 63.5 63.4 
 LSC(𝑓𝑖𝑥) 60.8 63.1 65.1 56.1 48.9 76.2 94.9 52.7 64.7 
 LSC 67.1 62.4 68.8 51.3 51.8 75.6 94.9 60.2 66.5 
 UA 67.0 64.4 67.9 48.7 48.5 76.5 92.8 65.6 66.4 
 GDA 68.1 62.3 70.4 52.8 55.4 76.4 93.5 67.6 68.3 
 ESCDA-V 67.9 62.7 66.6 54.4 47.7 77.1 92.6 66.1 66.9 
 ESCDA 65.3 66.7 72.1 56.4 55.1 77.6 94.9 68.6 69.6 

NTB’s MHSA module. Compared to LSC(𝑓𝑖𝑥), LSC introduces an adap-
tively learnable parameter 𝜖𝑖 for each AU branch, enabling more flexi-
ble identification of regions beneficial for AU detection. We can observe 
a gradual increase in the average F1-frame from 63.4 to 64.0 and then 
to 64.2, demonstrating the effectiveness of our approach, which treats 
the self-attention distribution of each AU as a spatial distribution and 
adaptively imposes constraints based on prior knowledge.

4.3.2. Global dual-directional attention
Another baseline UA only learns unidirectional attention in global 

face. Based on UA, GDA uses the full dual-directional attention mod-
ule, enabling the adaptive learning of global attention map in both 
horizontal and vertical directions. This results in the average F1-frame 
improving from 63.7 to 64.2, demonstrating GDA’s ability to under-
stand the relationships among global AUs through dual-directional 
attention.

4.3.3. Multi-view ensemble
We notice that the average F1-frame of LSC is close to that of 

GDA. Combining LSC and GDA into an ensemble, the model’s average 
F1-frame rose from 64.2 to 65.5. This notable improvement under-
scores multi-view ensemble’s efficacy. LSC captures local patterns, 
while GDA captures global ones. Through multi-view ensemble, our 
ESCDA combines these models’ strengths to detect various pattern 
types. Concurrently, we can see that ensemble learning by the voting 
method also improves model performance, though not as effectively 
as the averaging method. This is because taking the maximum value 
of two models in the voting method may lose valuable information 
and overlooking more precise predictions, whereas averaging focuses 
on diverse patterns, facilitating a more effective integration of both 
models’ strengths.

4.3.4. More discussions on DISFA
Since each of our models achieves remarkable performance on the 

DISFA dataset, we also conduct ablation studies to further investigate 
their effectiveness. As observed in Table  7, ESCDA achieves either the 
best or second-best results for all AUs except AU 1, demonstrating 
that ensemble learning can effectively combine the strengths of LSC 
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Fig. 4. Visualization of pre-constrained self-attention 𝐀′
𝑖 averaged over channels, predefined mask 𝐌𝑖, post-constrained self-attention 𝐀𝑖 averaged over channels learned by our 

LSC on two sample images from BP4D [28]. For each sample image, the first, second, and third rows show 𝐀′
𝑖 , 𝐌𝑖, and 𝐀𝑖 for 12 evaluated AUs, respectively.
Fig. 5. Visualization of dual-directional attention learned by our GDA on several 
example images from BP4D [28]. The heatmaps are obtained using the visualization 
method Grad-CAM [40]. It can be observed that highlighted regions are relevant to 
such AUs: AUs 6, 10, 12, 14, and 15 in the first column; AUs 1, 2, 6, 7, 10, 12, and 
14 in the second column; AUs 7, 10, and 12 in the third column; AUs 4 and 10 in the 
fourth column.

and GDA. By leveraging a multi-view perspective, ESCDA provides a 
more comprehensive focus on all categories, thereby alleviating the 
issue of label imbalance to some extent. For LSC and GDA, notable 
improvements are observed on low-frequency AUs such as AU 1 and 
AU 9 compared to their respective variants, indicating their enhanced 
ability to capture the characteristics of infrequent AUs.

4.4. Visual results

Fig.  4 visualizes pre-constrained self-attention 𝐀′
𝑖 averaged over 

channels, predefined mask 𝐌𝑖, post-constrained self-attention 𝐀𝑖 aver-
aged over channels for each AU learned by our LSC. It can be seen 
that unconstrained self-attention is dispersed and unable to concentrate 
on the ROI of each AU. Once combined with the mask, self-attention 
effectively captures the areas adjacent to the AU. Furthermore, thanks 
to the learnable parameter 𝜖𝑖, potentially important regions outside 
the ROI of AU are adaptively captured across different channels, with 
each channel revealing unique patterns. For instance, regions outside 
the ROI of AU 7 are learned as higher importance than those of 
AU 6. Incorporating prior knowledge of AU positions and learnable 
parameters allows our LSC to not only identify regions strongly related 
to the AU, but also adaptively detect weakly related areas distant from 
the ROI.

Fig.  5 visualizes the highlighted areas when our GDA predicts the 
activation of AUs. We can observe that the model covers the global face 
8 
with different learned attentions. The model can accurately allocate 
focused attention to the areas corresponding to the AUs present in the 
image. For instance, in the first sample, areas corresponding to AU 
6 (cheek raiser), AU 10 (upper lip raiser), AU 12 (lip corner puller), 
AU 14 (dimpler), and AU 15 (lip corner depressor) exhibit significant 
responses. Furthermore, the attention response areas are continuous, 
indicating that the model considers both individual AU activation and 
the spatial relationships among adjacent AUs. This observation aligns 
with the human understanding that facial expressions are a continuous, 
dynamic process, not merely a combination of independent AUs.

5. Conclusion

In this paper, we have presented an AU detection framework that 
assembles a LSC network and a GDA network. By assembling these 
models, the combination of global and local views allows our frame-
work to identify emotional traits at both comprehensive levels, thereby 
enhancing its generalizability. We have compared our method against 
state-of-the-art approaches on the BP4D, DISFA, and GFT datasets, 
demonstrating significant superiority over prior approaches. Besides, 
ablation studies further reveal that each key component of our frame-
work plays a role in AU detection. Moreover, visualization results 
underscore the efficacy of both the LSC network and the GDA network.

Limitation and future work. Our proposed AU detection frame-
work captures the local and global information in static images, but 
the temporal information contained in the dynamic changes of ex-
pressions is also important. In the future work, we will incorporate 
temporal models such as temporal transformers to capture cross-frame 
AU relationships, and introduce technologies to optimize attention 
computation operations, thereby addressing the high computational 
costs problems.
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