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Facial micro-expression recognition (MER) is a challenging task, due to the transience, subtlety, and dynamics of micro-expressions
(MEs). Most existing methods resort to hand-crafted features or deep networks, in which the former often additionally requires key
frames, and the latter suffers from small-scale and low-diversity training data. In this paper, we develop a novel fine-grained dynamic
perception (FDP) framework for MER. We propose to rank frame-level features of a sequence of raw frames in chronological order,
in which the rank process encodes the dynamic information of both ME appearances and motions. Specifically, a novel local-global
feature-aware transformer is proposed for frame representation learning. A rank scorer is further adopted to calculate rank scores
of each frame-level feature. Afterwards, the rank features from rank scorer are pooled in temporal dimension to capture dynamic
representation. Finally, the dynamic representation is shared by a MER module and a dynamic image construction module, in which
the former predicts the ME category, and the latter uses an encoder-decoder structure to construct the dynamic image. The design
of dynamic image construction task is beneficial for capturing facial subtle actions associated with MEs and alleviating the data
scarcity issue. Extensive experiments show that our method (i) significantly outperforms the state-of-the-art MER methods, and
(ii) works well for dynamic image construction. Particularly, our FDP improves by 4.05%, 2.50%, 7.71%, and 2.11% over the previous
best results in terms of F1-score on the CASME II, SAMM, CAS(ME)2, and CAS(ME)3 datasets, respectively. The code is available at
https://github.com/CYF-cuber/FDP.
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2 Z. Shao et al.

1 Introduction

Facial micro-expression recognition (MER) has recently gained increasing attention in the fields of computer vision and
affective computing [27, 51, 53, 66]. It has applications in many areas, as micro-expressions (MEs) can reveal emotions
those are attempted to conceal [11]. For instance, in mental health, MER can be used to spot signs of disorders like
depression and monitors treatment progress. It can also be used to detect non-verbal pain in patients who cannot
communicate well. Recently, Zhou et al. [77] proposed a multi-modal fine-grained depression detection method via
fusing audio and text features. However, visual modality ME that can well reflect the degree of depression is ignored.
In public security, MER can be used to aid criminal investigations in terms of lie detection and suspect identification.
It can also be used to spot suspicious emotional states in the crowd so as to prevent threats. However, MEs are often
neglected in recent lie detection works [18, 22]. Therefore, we explore a new MER solution to empower mental health
and public security. MEs are facial subtle muscle actions, and are dynamic during a short duration with no more than
500 milliseconds [69]. Besides, most of the existing ME datasets are small-scale [7, 68], due to the large costs of manual
labeling. With limited training data to capture challenging MEs, MER remains a difficult task.

One common solution is to adopt hand-crafted features associated with MEs. These features typically try to capture
motion patterns [5, 72], encode spatio-temporal information [4, 74], or focus on local contrast information [8, 32].
However, hand-crafted features based on prior knowledge only process partial characteristics, and have limited capacity
to model challenging MEs in diverse samples. Moreover, these features like optical flow [72] often additionally rely on
key frames including onset, apex, and offset frames of MEs to improve the recognition performance, which limits the
applicability.

Another alternative way is to use prevailing deep neural networks. Zhou et al. [79] computed the optical flow
between onset and apex frames of the input video, and then fed horizontal and vertical components of the optical flow
into a dual-inception network to predict the ME category. However, pre-extracted optical flow as well as key frames are
required. Some other methods directly input raw frame images to deep networks so as to remove the limitations of
hand-crafted features. For example, Reddy et al. [48] employed a 3D convolutional neural network (CNN) to capture
spatial and temporal information, and Xia et al. [63] used macro-expression recognition to facilitate MER. However, the
capture of fine-grained ME information is not explicitly handled, and these methods suffer from insufficient training
data.

To tackle the above issues, we introduce a rank pooling technique [13] to perceive temporal evolution of appearance
in ME videos, and improve the transformer [58] structure to capture both local and global characteristics. As mentioned
in [67], dynamic facial expression recognition has wider practical applications, such as empowering smart cities. Our
work is based on dynamic and continuous ME frame sequence rather than pre-annotated key frames. By the rank pooling,
the spatial appearances and temporal motions of a video can be encoded as a dynamic image [4], which indicates the
correlations between dynamic image andME, as illustrated in Fig. 1. In particular, we propose an end-to-end Fine-grained
Dynamic Perception framework called FDP, which jointly estimates ME and constructs dynamic image of the input
video. First, a novel local-global feature-aware transformer is proposed to capture ME related local information while
preserving the global relational modeling ability of vanilla transformer [58] for single frame representation learning.
After extracting the local-global feature, a rank scorer is further employed to learning temporal rank information of
each frame. Then, a 3D CNN based temporal pooling module is applied to capture temporal features from all the single
rank features so as to learn video-wide dynamic representation. Finally, two modules of MER estimation and dynamic
image construction are adopted to predict the ME category and the dynamic image, respectively.

ACM Trans. Multimedia Comput. Commun. Appl.
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Video Clip Dynamic Image

Fig. 1. Illustration of dynamic images [4] for several example video clips. Each row shows four sample frames of a ME video clip as
well as the generated dynamic image. The overall facial appearances and the highlighted motion areas can be observed from the dynamic
images.

The main contributions of this work are threefold:
• We propose a novel fine-grained dynamic perception framework with MER and dynamic image construction,

which does not depend on pre-extracted hand-crafted features and key frames. The use of dynamic image construction
task contributes to capturing facial subtle muscle actions related to MEs, which relaxes the dependence of our deep
network on large-scale training samples.

• We propose a novel local-global feature-aware transformer to capture local subtle information associated with
MEs while preserving the global modeling capacity of transformer.

• Extensive experiments on CASME II, SAMM, CAS(ME)2, and CAS(ME)3 benchmarks demonstrate that our approach
soundly outperforms the state-of-the-art MER methods, and achieves competitive performance for dynamic image
construction.

2 Related Work

In this section, we review the previous methods those are closely associated with our approach, including non-deep
learning based MER, deep learning based MER, rank pooling and dynamic image, and combination of CNN and vision
transformer (ViT).

ACM Trans. Multimedia Comput. Commun. Appl.
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2.1 Non-Deep Learning Based MER

SinceMEs are subtle and hardly distinguishable, earlier methods propose hand-crafted features based on prior knowledge
about local characteristics and motion patterns. Zhao et al. [74] designed local binary patterns from three orthogonal
planes (LBP-TOP) by considering co-occurrence statistics of motions in three directions. Wang et al. [60] further
proposed local binary patterns with six intersection points (LBP-SIP) to avoid duplicated encoding in LBP-TOP. Ben et

al. [2] proposed binary face descriptors including dual-cross patterns from three orthogonal planes (DCP-TOP) and hot
wheel patterns from three orthogonal planes (HWP-TOP) to encode the discriminative features of ME videos. Another
solution of hand-crafted features is based on histogram. Davison et al. [8] designed histogram of oriented gradients
(HOG), and Li et al. [32] further proposed histogram of image gradient orientation (HIGO).

Besides, optical flow describes the motion pattern of each pixel across frames, which has been widely used in MER.
Davison et al. [36] proposed bi-weighted oriented optical flow (Bi-WOOF) by using onset frame and apex frame to
represent a ME. Happy et al. [16] developed histogram of oriented optical flow (HOOF) [5] to FHOOF by using fuzzy
membership function to collect motion directions, and further developed FHOOF to fuzzy histogram of optical flow
orientations (FHOFO) by ignoring subtle motion magnitudes. Dynamic image [4] is another newer way to encode facial
motion information of a video, which has been introduced to MER [43, 59].

However, these hand-crafted features only focus on partial characteristics associated with MEs, and often additionally
rely on key frames of MEs.

2.2 Deep Learning Based MER

Considering the power of deep neural networks [50, 52, 54], Reddy et al. [48] introduced a 3D CNN to capture spatial and
temporal information from raw image sequences for MER. Wei et al. [62] proposed an attention-based magnification-
adaptive network (AMAN) to magnify and focus on ME details. Since subtle MEs are hard to capture, some methods
adopt correlated tasks to facilitate MER. Xie et al. [66] proposed an AU-assisted graph attention convolutional network
(AU-GACN) to reason the relationships among AUs so as to assist the recognition of MEs. Xia et al. [63] introduced
macro-expression recognition as an auxiliary task, and used adversarial learning to align the feature distributions
between macro-expressions and MEs.

Since current deep networks suffer from small-scale and low-diversity ME datasets, other approaches combine
hand-crafted features with deep learning. Hu et al. [19] incorporated local Gabor binary pattern from three orthogonal
panels (LGBP-TOP) features and CNN features, and then trained MER by treating the classification of each ME category
as a one-against-all classification problem. Liu et al. [37] extracted TV-L1 optical flow between key frames to input into
a pre-trained ShuffleNet and then conducted classification via support vector machine (SVM). Verma et al. [59] first
extracted the dynamic image of the input ME video, and then fed it into a lateral accretive hybrid network (LEARNet).
Shao et al. [49] generated the optical flow between onset and apex frames of the input video, then input horizontal and
vertical optical flow components to a dual-inception network, and finally jointly train MER and AU recognition based
on a transformer [58].

All these methods suffer from insufficient training data, or dependence on hand-crafted features. In contrast, our
method put MER and dynamic image construction into a joint learning framework, in which raw images are handled,
and the auxiliary task alleviate the requirement of large-scale training data.

ACM Trans. Multimedia Comput. Commun. Appl.
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2.3 Rank Pooling and Dynamic Image

Rank pooling [13] is a video representation technique used in video analysis to aggregate information over time,
typically in action recognition tasks [4, 6]. It aims to summarize a sequence of ranked frames into a single representative
feature vector. The process involves ranking frames, temporal pooling and optimization. Compared to rank pooling,
dynamic image [4] summarizes a whole video into a single image, which synthesizes a static representation that captures
the motion dynamics. In the previous work [59], dynamic image is employed as a pre-extracted feature to directly input
into deep networks.

Inspired by the above works, we design FDP using the same process as rank pooling, and further construct the
dynamic image using rank features. In our approach, subtle ME actions are handled by learning video-wide temporal
evolution, which includes ranking the frames in temporal dimension and constructing the dynamic image.

2.4 Combination of CNN and ViT

In the past few years, CNN and ViT have achieved great performance successively in many vision tasks [1, 3, 17, 34],
in which the former works well in modeling local relationships and the latter is good at extracting global features.
However, pure convolution struggles to capture long-range dependencies due to the limited reception field, and vanilla
ViT that relies on self-attention mechanism is inefficient to encode low-level features.

Recently, hybrid structures of CNNs and ViTs are designed to improve the representation ability, in which local and
global information are simultaneously focused while their respective weaknesses are avoided. Liu et al. [39] proposed a
ConvTransformer with multi-head convolutional self-attention layers, to achieve video frame sequence learning and
video frame synthesis. Yuan et al. [71] combined the advantages of CNN and transformer, in which the former works
well in extracting low-level features and strengthening locality, and the latter can establish long-range dependencies by
extracting patches from low-level features and can promote the correlations among neighboring tokens in the spatial
dimension. Srinivas et al. [55] replaced the vanilla convolution with multi-head self-attention in the last several blocks
of ResNet [17]. Guo et al. [15] proposed a CMT network by inheriting the merits of CNN and ViT, which is composed
of depthwise convolutions with local perception units and a light-weight transformer module.

In our work, we integrate the merits of CNNs and ViTs by designing a local-global feature-aware transformer with
local relational aggregator and global relational aggregator. Due to the capture of long-range dependencies and local
information, our method is effective at modeling transient, subtle, and dynamic MEs.

3 Rank Pooling Inspired Micro-Expression Recognition and Dynamic Image Construction

3.1 Fine-Grained Dynamic Perception Framework

Given a video clip with 𝑡 frames {I0, I1, · · · , I𝑡−1}, we first obtain single frame representation F𝑘 of the 𝑘-th frame I𝑘
in the input video, respectively. Then, a rank scorer u is employed to rate each single frame representation, in which
the later frames are expected to receive higher scores according to the temporal order. Afterwards, the sequence of
single frame representation {F0, F1, · · · , F𝑡−1} is fed into a temporal pooling module to learn video-wide dynamic
representation F(𝑑 ) . Finally, F(𝑑 ) is shared by MER module and dynamic image construction module for joint learning.
Fig. 2 shows the overview of our framework, and Algorithm 1 shows the detailed processes.

Our FDP directly processes raw frame images without requiring key frames, andMER and dynamic image construction
can contribute to each other in our joint learning framework.

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 2. The architecture of our FDP. Given a sequence of 𝑡 frames {I0, I1, · · · , I𝑡−1}, FDP first extracts local-global feature F𝑘 of each
frame I𝑘 by our proposed local-global feature-aware transformer. Then, the local-global features {F0, F1, · · · , F𝑡−1} are input to a
fully connection layer based rank scorer to obtain the rank score of each frame, respectively. Afterwards, the sequence of local-global
features {F0, F1, · · · , F𝑡−1} is fed into a 3D convolutional layer to extract video-wide dynamic representation F(𝑑 ) . Finally, F(𝑑 ) is fed
into MER module and dynamic image construction module to estimate the ME category and the dynamic image D̂, respectively.

Algorithm 1 The detailed processes of our FDP framework.
Input: A video clip {I0, I1, · · · , I𝑡−1}.
Output: The predicted ME category 𝑐 and dynamic image D̂.
1: Define single frame representation module as F .
2: Define rank scorer as R.
3: Define dynamic representation module as D.
4: Define dynamic image construction module as C.
5: Define micro-expression recognition module asM.
6: for each 𝑘 ∈ {0, 1, · · · , 𝑡 − 1} do
7: Single frame representation F𝑘 = F (I𝑘 ).
8: end for
9: Rank loss L𝑅𝑎𝑛𝑘 = R ({F0, F1, · · · , F𝑡−1}), only used for training.
10: Dynamic representation F(𝑑 ) = D ({F0, F1, · · · , F𝑡−1}).
11: Predict ME category probabilities {𝑝0, · · · , 𝑝𝑚−1} = M (F(𝑑 ) ), and obtain 𝑐 = argmax

𝑗∈{0,1,· · · ,𝑚−1}
𝑝 𝑗 .

12: D̂ = C (F(𝑑 ) ).
13: Return 𝑐 and D̂.

3.2 Local-Global Feature-Aware Transformer

Inspired by [12] that conducting local and global features simultaneously for facial expression recognition, we design
a local-global feature extractor. To learn high-quality frame representations while reducing the effect of noise and
ACM Trans. Multimedia Comput. Commun. Appl.



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364
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violent abrupt variations, we introduce local-global feature-aware transformer. The goal of our proposed local-global
feature-aware transformer is to capture local correlated information while modeling global dependencies. It consists
of a vanilla convolutional layer, a stack of 𝑁𝑆 local-global relational aggregators, and a head block. Each local-global
relational aggregator is a hybrid structure of CNN and ViT, which contains a patch embedding (PE) layer [10], a stack
of 𝑁𝐿 CNN based local relational aggregators, and a stack of 𝑁𝐺 ViT based global relational aggregators. The head
block is composed of a batch normalization (BN) layer [21]and a global average pooling layer [34] to extract the final
local-global feature.

To enable the input of the first local-global relational aggregator, the patch embedding is obtained by extracting
patches from the feature map of the vanilla convolutional layer. The subsequent patch embeddings are obtained from
the output of the previous local-global relational aggregator. We will elaborate the local relational aggregator and the
global relational aggregator in the following sections.

3.2.1 Local Relational Aggregator. We design a local relational aggregator based on CNN while incorporating the
paradigm of transformer [58]. Specifically, an input X𝑙 = (X𝑙

0,X
𝑙
1, · · · ,X

𝑙
ℎ−1) with ℎ heads in channel dimension first

goes through a multi-head convolution block. The 𝑖-th input X𝑙
𝑖
is fed into the 𝑖-th single-head convolutional block,

which consists of a vanilla convolutional layer, a BN layer, and a rectified linear unit (ReLU) layer [42]. Then, the outputs
of ℎ heads are concatenated and are further interacted by a pointwise convolutional layer [20]. A residual structure
with skip connection [17] is then utilized to suppress the vanishing gradient problem. Finally, a multilayer perceptron
(MLP) layer with another residual structure is applied to obtain local feature.

Our proposed local relational aggregator inherits the advantage of convolution that can aggregate contexts in local
regions with efficient computations, in which local token affinity is captured with a small amount of parameters.

3.2.2 Global Relational Aggregator. Besides the capture of local details, it is also important to exploit global correlations
in the broader token space. The architecture of our proposed global relational aggregator is illustrated in the bottom of
Fig. 2. It is composed of a pointwise convolutional layer, a multi-head self-attention block [58], a multi-head convolution
block, and a MLP layer, in which three residual structures are adopted.

Denote the input of the multi-head self-attention block be X𝑔 = (X𝑔

0,X
𝑔

1, · · · ,X
𝑔

ℎ−1). For the 𝑖-th head, we first
calculate the queries Q𝑖 , keys K𝑖 , and values V𝑖 as

Q𝑖 = WQ𝑖
X𝑔

𝑖
, (1a)

K𝑖 = WK𝑖
X𝑔

𝑖
, (1b)

V𝑖 = WV𝑖
X𝑔

𝑖
, (1c)

where WQ𝑖
, WK𝑖

, and WV𝑖
are learnable weight matrices. To map Q𝑖 and K𝑖 -V𝑖 pair to a new output, the self-attention

is defined as
A𝑖 = 𝜎 (

Q𝑖K𝑖𝑇√
𝑑𝑖𝑚

)V𝑖 , (2)

where Q𝑖 , K𝑖 , and V𝑖 have the same channel dimension 𝑑𝑖𝑚, 1√
𝑑𝑖𝑚

is adopted to scale the dot product, and 𝜎 (·) is a
Softmax function for weighted summing of the values V𝑖 . Then, a feed forward network is applied to each spatial
position for further encoding:

Y𝑔
𝑖
= 𝐹𝐶 (A𝑖 ), (3)

where 𝐹𝐶 (·) denotes a fully-connected layer, and one dropout layer [56] following the fully-connected layer is omitted.
ACM Trans. Multimedia Comput. Commun. Appl.
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The outputs of multiple heads are further fused to be the final output of the multi-head self-attention block. This
block and the multi-head convolution block are cooperated to capture global dependencies, and the MLP layer is used
to extract the final feature.

Our global relational aggregator can adaptively model long-range dependencies from distant regions by inheriting
the self-attention [58] paradigm. By progressively stacking local and global relational aggregators, our local-global
feature-aware transformer with merits of transformer and convolution can extract complete local-global feature.

3.3 Rank Scorer and Temporal Pooling

A video is ordered sequences of frames, where the frame order also dictates the evolution of the frame appearances [13].
To model the latent evolution information in frames, we introduce a linear function based rank scorer u. Considering a
pair of independent frame representations F𝑖 and F𝑗 , we aim to learn u such that 𝑖 < 𝑗 ⇔ 𝑆 (F𝑖 ) < 𝑆 (F𝑗 ). 𝑆 (x) denotes
the rank score, which is defined as

𝑆 (x) = u𝑇 · x. (4)

Our optimization goal is to make the rank score increase in chronological order. Thus, the rank loss is defined as

L𝑅𝑎𝑛𝑘 =

𝑡−1∑︁
𝑘=0

|𝐾 (𝑘) − 𝑆 (F𝑘 ) | , (5)

where 𝐾 (·) denotes direct proportionality function with a positive parameter. Simultaneously, the frame representations
{F0, F1, · · · , F𝑡−1} are reshaped into two-dimensional feature maps and concatenated in chronological order. Then, the
temporal pooling achieved through 3D convolution is applied to obtain the dynamic representation F(𝑑 ) .

3.4 Joint Learning of Tasks

3.4.1 Dynamic Image Construction. The dynamic image summarizes the appearances and dynamics of a whole video
as one image. The introduction of the dynamic image construction task allows our framework to better extract dynamic
features in a ME video, so as to facilitate the performance of MER.

The detailed structure of the dynamic image construction module is shown in Fig. 3. It contains an encoder network
and a decoder network, which is a fully convolutional network without fully-connected layers. This design of full
convolution is beneficial for element-wise prediction. Its end is a Sigmoid layer to produce the estimated single-channel
dynamic image D̂, in which each element in the output of the decoder network is mapped into (0, 1) interval.

The encoder network consists of four consecutive encoder blocks, each of which is composed by a convolutional
layer and a max-pooling layer. Particularly, the former is followed by a BN layer and a leaky ReLU layer [40]. The
decoder network with four decoder blocks is the counterpart of the encoder network. Each decoder block contains a
deconvolutional layer and a convolutional layer followed by BN and leaky ReLU. The deconvolutional layer is used to
upsample feature maps, which is treated as the inverse process of the max-pooling layer. The skip connections [17]
between encoder blocks and decoder blocks are beneficial for exploiting encoder information in the decoding process
and accelerating the training procedure.

The dynamic image construction loss is defined as

L𝐷𝐼𝐶 = 𝑀𝑆𝐸 (D̂,D), (6)

where D denotes the ground-truth dynamic image of input video clip {I0, I1, · · · , I𝑡−1}, and 𝑀𝑆𝐸 (·) denotes mean
squared error (MSE) loss.
ACM Trans. Multimedia Comput. Commun. Appl.



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Micro-Expression Recognition via Fine-Grained Dynamic Perception 9

Encoder Decoder

Conv+BN+Leaky ReLU Max-Pooling Deconv Sigmoid Add

෡𝐃𝐅  𝑑

Fig. 3. The structure of dynamic image construction module. It is an encoder-decoder as a fully convolutional network without
fully-connected layers. The curved arrow denotes skip connection, in which the encoder feature map is element-wise added to the
decoder feature map.

3.4.2 Micro-Expression Recognition. The overall architecture of the MER module is illustrated in the right side of
Fig. 2. It consists of a max-pooling layer and two fully-connected layers, in which the former is utilized to reduce the
dimensions of the dynamic representation F(𝑑 ) while maintaining important information, and the latter is used for ME
classification. The MER loss is defined as a cross-entropy loss:

L𝑀𝐸𝑅 = −
𝑚−1∑︁
𝑗=0

𝑝 𝑗 log(𝑝 𝑗 ), (7)

where𝑚 denotes the number of ME categories, and 𝑝 𝑗 denotes the predicted probability that the video sample is in the
𝑗-th category. 𝑝 𝑗 denotes the ground-truth probability, which is 1 if the video sample is in the 𝑗-th category and is 0
otherwise.

3.4.3 Full Loss. In our joint learning framework, the full loss is combined by L𝑀𝐸𝑅 , L𝐷𝐼𝐶 and L𝑅𝑎𝑛𝑘 :

L = L𝑀𝐸𝑅 + 𝜆𝑑L𝐷𝐼𝐶 + 𝜆𝑟L𝑅𝑎𝑛𝑘 , (8)

where 𝜆𝑑 and 𝜆𝑟 are parameters to weigh the importance of MER, dynamic image construction and rank tasks.

4 Experiments

4.1 Datasets and Settings

4.1.1 Datasets. We evaluate our method on four popular spontaneous ME datasets, including CASME II [68], SAMM [7],
CAS(ME)2 [47], and CAS(ME)3 [31].

• CASME II consists of 255 videos captured from 26 subjects in steady and high-intensity illumination. To elicit the
MEs, subjects are induced to experience a high arousal with motivations to disguise. Each video is recorded with the
frame rate of 200 frames per second (FPS) and the frame size of 280 × 340. The average duration of MEs is 66.21 frames.
Following the previous methods [30, 63], we use ME categories of happiness, disgust, repression, surprise, and others
for five-classes evaluation, and use ME categories of positive, negative, and surprise for three-classes evaluation.

ACM Trans. Multimedia Comput. Commun. Appl.



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Z. Shao et al.

Table 1. The number of videos for each ME category in CASME II [68], SAMM [7], and CAS(ME)3 [31]. The used five categories
of CASME II and SAMM, as well as used seven categories of CAS(ME)3 are highlighted with its number in bold. “-” denotes this
category is not included.

Class
Dataset CASME II SAMM CAS(ME)3

Happiness 32 26 64
Anger - 57 70

Contempt - 12 -
Disgust 63 9 281
Fear 2 8 93

Repression 27 - -
Surprise 28 15 201
Sadness 4 6 64
Others 99 26 170

Table 2. The number of videos for each ME category in CASME II [68],and SAMM [7], in terms of three-classes evaluation, as well as
CAS(ME)2 [47] in terms of four-classes evaluation.

Class
Dataset CASME II SAMM CAS(ME)2

Positive 32 26 8
Surprise 28 15 9
Negative 96 92 21
Others - - 19

• SAMM includes 159 videos at 200 FPS from 29 subjects, which are collected using gray-scale cameras in constrained
lighting conditions without flickering. The MEs are elicited from stimuli tailored to each subject. The average duration
of MEs is 74.31 frames. Similar to the previous works [30, 63], we select ME categories of happiness, anger, contempt,
surprise, and others for five-classes evaluation, and select ME categories of positive, negative, and surprise for three-
classes evaluation.

• CAS(ME)2 contains 87 long videos, each of which includes spontaneous macro-expressions or MEs. These videos
are further cropped as 300 macro-expression video clips and 57 ME video clips. The average duration of MEs is 12.58
frames. We only evaluate on the ME video clips, in terms of four classes (positive, negative, surprise, and others).

• CAS(ME)3 provides 1, 109 MEs and 3, 490 macro-expressions from 100 subjects, in which each subject is asked to
watch 13 emotionally stimuli and keep their faces expressionless. The recorded videos have the resolution of 1, 280× 720.
The average duration of MEs is 28.61 frames. We conduct experiments on 943 ME videos from Part A, with seven
categories (happiness, disgust, surprise, anger, fear, sadness and others).

All ME video clips in these datasets are labeled. The number of samples for each ME category are summarized in
Table 1 and Table 2, and the attributes of each dataset are shown in Table 3. The dynamic image of each video in these
datasets is generated using [4] as the ground-truth annotation.

4.1.2 Evaluation Metrics. Similar to most previous works [30, 63], leave-one-subject-out (LOSO) cross-validation is
applied in the single dataset evaluation, in which each subject is taken as the test set in turn while the remaining
subjects are taken as the training set. We report popular metrics, including accuracy (Acc) and F1-score (F1) for CASME
ACM Trans. Multimedia Comput. Commun. Appl.
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Table 3. The attributes of CASME II [68], SAMM [7], CAS(ME)2 [47], and CAS(ME)3 [31].

Attribute
Dataset CASME II SAMM CAS(ME)2 CAS(ME)3

Number of Subject 26 29 22 100
Frames Per Second 200 200 30 30

Number of ME Samples 255 159 57 1109
Average Duration (frames) 66.21 74.31 12.58 28.61

II, SAMM, and CAS(ME)2, as well as F1 and unweighted average recall (UAR) for CAS(ME)3. UAR is defined as

𝑈𝐴𝑅 =
1
𝑚

𝑚−1∑︁
𝑗=0

𝑇𝑃 𝑗

𝑇𝑃 𝑗 + 𝐹𝑁 𝑗
, (9)

where𝑚 is the total number of ME categories, and𝑇𝑃 𝑗 , 𝐹𝑃 𝑗 , and 𝐹𝑁 𝑗 denote the number of true positives, false positives,
and false negatives for the 𝑗-th category, respectively.

To investigate the generalization ability of our method, we also perform a cross-dataset evaluation. We conduct a
two-fold cross-validation on CASME II and SAMM datasets, in which one dataset is used for training while the other
dataset is used for testing. Following the settings in previous approaches [24, 38, 74], we report two metrics of weighted
average recall (WAR) and UAR. WAR is defined as

𝑊𝐴𝑅 =

𝑚−1∑︁
𝑗=0

𝑇𝑃 𝑗

𝑁
, (10)

where 𝑁 denotes the total number of samples.
In the following sections, Acc, F1, WAR, and UAR results are all reported in percentages, in which % is omitted for

simplicity.

4.1.3 Implementation Details. In our experiments, we extract a video clip with 𝑡 frames as the input of our FDP by
uniformly-space sampling from the raw video. Each frame image is cropped with few background regions and is aligned
to 3×72×72 via similarity transformation, in which facial shape is preserved without changing the ME. During training,
each image is randomly cropped into 3 × 64 × 64 and is further horizontally flipped to improve the diversity of training
data. During testing, each image is centrally cropped into 3 × 64 × 64 so as to be consistent with the training input size.

Our FDP is implemented based on PyTorch [44], with a solver of Adam [25], an initial learning rate of 1× 10−4, and a
mini-batch size of 36. The number of frames in the input video clip is set as 𝑡 = 8, in which each clip is uniformly-spaced
sampled from the raw video with a random offset. The trade-off parameter 𝜆𝑑 and 𝜆𝑟 are set to 100 and 0.1, respectively.
The structure parameters of local-global feature-aware transformer are set as: 𝑁𝑆 = 4, 𝑁𝐿 = 2, and 𝑁𝐺 = 1. All the
experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU. FDP takes about 5.8 GB GPU memory for
about 3.5 hours during training, which demonstrates light-weight transformer structure in our method.

4.2 Comparison with State-of-the-Art Methods

We compare our FDP with state-of-the-art MER methods under the same evaluation setting. These methods can be
classified into non-deep learning (NDL) based methods and deep learning (DL) based methods. The latter can be further

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 4. Comparison with state-of-the-art methods on CASME II [68] and SAMM [7] for five categories. DL, NDL, PF, RI, and KF
denote deep learning based methods, non-deep learning based methods, pre-extracted hand-crafted features, raw images, and key
frames, respectively. “-” denotes the result is not reported in its paper. The best results are highlighted in bold, and the second best
results are highlighted by an underline.

Method Paper Type CASME II SAMM
Acc F1 Acc F1

SparseSampling [28] TAFFC’17 NDL 49.00 51.00 - -
Bi-WOOF [36] SPIC’18 NDL+KF 58.85 61.00 - -
HIGO+Mag [32] TAFFC’18 NDL 67.21 - - -
FHOFO [16] TAFFC’19 NDL 56.64 52.48 - -
DSSN [23] ICIP’19 DL+PF+KF 70.78 72.97 57.35 46.44

Graph-TCN [30] MM’20 DL+RI+KF 73.98 72.46 75.00 69.85
MicroNet [64] MM’20 DL+RI+KF 75.60 70.10 74.10 73.60
LGCcon [33] TIP’21 DL+PF 62.14 60.00 35.29 23.00
AU-GCN [29] CVPRW’21 DL+PF+KF 74.27 70.47 74.26 70.45
GACNN [27] CVPRW’21 DL+PF 81.30 70.90 88.24 82.79
GEME [43] NeuCom’21 DL+PF 75.20 73.54 55.88 45.38

MERSiamC3D [75] NeuCom’21 DL+PF+KF 81.89 83.00 68.75 64.00
MiNet&MaNet [63] IJCAI’21 DL+RI 79.90 75.90 76.70 76.40
MER-Supcon [76] PRL’22 DL+PF+KF 73.58 72.86 67.65 62.51

AMAN [62] ICASSP’22 DL+RI 75.40 71.25 68.85 66.82
SLSTT [73] TAFFC’22 DL+PF 75.81 75.30 72.39 64.00
Dynamic [57] TAFFC’22 DL+RI+KF 72.61 67.00 - -

I2Transformer [49] APIN’23 DL+PF+KF 74.26 77.11 68.91 73.01
FDP Ours DL+RI 88.42 87.05 86.69 85.29

categorized into pre-extracted feature (PF) based methods and raw image (RI) based methods, according to the type of
network input.

In particular, NDL based methods include LBP-TOP [74], 3DHOG [46], MDMO [38], SparseSampling [28], Bi-
WOOF [36], HIGO+Mag [32], and FHOFO [16]. DL+PF based methods include AlexNet [26], Khor et al. [24], DSSN [23],
STSTNet [35], RCN [65], LGCcon [33], AU-GCN [29], GACNN [27], GEME [43], MERSiamC3D [75], MER-Supcon [76],
SLSTT [73], FR [78], HTNet [61], and I2Transformer [49]. DL+RI based methods include Peng et al. [45], Graph-TCN [30],
MicroNet [64], MiNet&MaNet [63], AMAN [62], and Dynamic [57]. Besides, some of these methods rely on key frames
(KF) of MEs, or employ outside training data such as macro-expression datasets.

4.2.1 Single Dataset Evaluation. Table 4 and Table 5 show the comparison results on single datasets of CAMSE II and
SAMM for five categories and three categories, respectively. It can be seen that DL based methods often outperform
NDL based methods, which proves the power of deep networks. Note that some recent state-of-the-art methods like
GACNN [27] achieve excellent results. This is mainly because these methods rely on auxiliary information such as
hand-crafted features and key frames, which assist them to capture ME related information. In contrast, our FDP is
significantly better on most evaluations by directly processing raw images. Besides, compared to the methods like
MiNet&MaNet using additional macro-expression datasets, FDP performs better with only benchmark training samples.

Moreover, we evaluate our method on more challenging datasets CAS(ME)2 and CAS(ME)3 in Table 6 and Table 7,
respectively. Note that CAS(ME)2 and CAS(ME)3 datasets exhibit more varieties than CASME II and SAMM datasets.
ACM Trans. Multimedia Comput. Commun. Appl.



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Micro-Expression Recognition via Fine-Grained Dynamic Perception 13

Table 5. Comparison with state-of-the-art methods on CASME II [68] and SAMM [7] for three categories. The best results are
highlighted in bold.

Method Paper Type CASME II SAMM
Acc F1 Acc F1

OFF-ApexNet [14] SPIC’19 DL+PF+KF 88.28 86.97 68.18 54.23
AU-GACN [66] MM’20 DL+RI 71.20 35.50 70.20 43.30
GACNN [27] CVPRW’21 DL+PF 89.66 86.95 88.72 81.18

MER-Supcon [76] PRL’22 DL+PF+KF 89.65 88.06 81.20 71.25
FDP Ours DF+RI 92.72 90.71 91.25 86.67

Table 6. Comparison with state-of-the-art methods on CAS(ME)2 [47]. The reported results of LBP-TOP are from [47], and other
methods are implemented using its released code. The best results are highlighted in bold.

Method Paper Type Acc F1
LBP-TOP [74] TPAMI’07 NDL 40.95 -

MicroExpSTCNN [48] IJCNN’19 DL+RI 67.35 54.43
AU-GCN [29] CVPRW’21 DL+PF+KF 69.38 65.21
SLSTT [73] TAFFC’22 DL+PF 75.51 73.98

FDP Ours DL+RI 83.67 81.69

Table 7. Comparison with state-of-the-art methods on CAS(ME)3 [31].The results of previous methods except for HTNet [61] are
reported by [31]. The best results are highlighted in bold

Method Paper Type F1 UAR
AlexNet [26] NeurIPS’12 DL+KF 25.70 26.34
STSTNet [35] FG’19 DL+PF+KF 37.95 37.92
RCN [65] TIP’20 DL+PF+KF 39.28 38.93
FR [78] PR’22 DL+PF+KF 34.93 34.13

HTNet [61] arXiv’23 DL+PF+KF 57.67 54.15
FDP Ours DL+RI 59.78 57.84

The recent released CAS(ME)3 has the largest number of samples. Compared with CAMSE II and SAMM, it has an
abundant number of samples in all seven categories, all of which can be used for training. Meanwhile, CAS(ME)3 is also
the most challenging one because its data contains more noise compared to other datasets. In this challenging case, our
FDP still significantly outperforms other methods.

It can be observed that our FDP achieves the overall best performance across datasets with varying categories,
scales, and noise levels. Specifically, FDP processes raw video sequences, requiring no category-specific adjustments
or auxiliary data. This confirms its applicability to any ME-containing video. In addition, by directly processing raw
images without dependencies on key frames, pre-extracted features, or external datasets, FDP eliminates pre-processing
dependencies. This enables deployment in real-world scenarios where prior information is inaccessible. Therefore, our
FDP is a practical MER solution.

4.2.2 Cross-Dataset Evaluation. Table 8 presents the cross-dataset evaluation results. The common three ME categories
of happiness, surprise, and others for the two datasets are used. It can be observed that our approach achieves the best

ACM Trans. Multimedia Comput. Commun. Appl.



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Z. Shao et al.

Table 8. WAR and UAR results for three ME categories (happiness, surprise, and others) of cross-dataset evaluations. Avg. denotes the
average results of two cross-dataset evaluations. The results of methods except for I2Transformer [49] are reported by [70]. CASME
II→SAMM denotes training on CASME II and testing on SAMM. The best results are highlighted in bold, and the second best results
are highlighted by an underline.

Method Paper Type CASME II→SAMM SAMM→CASME II Avg.
WAR UAR WAR UAR WAR UAR

LBP-TOP [74] TPAMI’07 NDL 33.8 32.7 23.2 31.6 28.5 32.2
3DHOG [46] ICDP’09 NDL 35.3 26.9 37.3 18.7 36.3 22.8
MDMO [38] TAFFC’16 NDL 44.1 34.9 26.5 34.6 35.3 34.8

Peng et al. [45] FG’18 DL+RI+KF 48.5 38.2 38.4 32.2 43.5 35.2
Khor et al. [24] FG’18 DL+PF+KF 54.4 44.0 57.8 33.7 56.1 38.9

I2Transformer [49] APIN’23 DL+PF+KF 51.2 - 66.2 - 58.7 -
FDP Ours DL+RI 58.2 51.8 62.2 56.0 60.2 53.9

average performance especially for the UAR metric, which demonstrates the strong generalization ability of our FDP.
This can be attributed to two merits of our method. First, our proposed local-global feature-aware transformer has
strong capacities of relational reasoning and feature learning by simultaneously modeling local and global contexts.
Second, the joint learning with dynamic image construction is beneficial for extracting ME related features, and thus
improves the robustness on unseen samples.

4.2.3 Systematic Discussion and Structured Gap Analysis. The above results demonstrate that our FDP outperforms
state-of-the-art MER methods in terms of both single dataset evaluation and cross-dataset evaluation. There are two
main limitations in previous MER methods:

• Dependency on Auxiliary Inputs and Pre-Processing
Pre-extracted Feature (PF) Reliance: Top-performing methods like GACNN [27], STSTNet [35], RCN [65], and FR [78]

rely on pre-extracted optical flow or other hand-crafted features. This introduces complexity and sensitivity to the
quality of feature extraction techniques. The need for separate feature computation hinders end-to-end learning and
real-time applicability.

Key Frame (KF) Reliance: Previous methods such as DSSN [23], AU-GCN [29], MERSiamC3D [75], MER-Supcon [76],
and RCN [65] require accurate detection of key frames. This dependency is problematic when key frames are not
provided or not detected correctly in real scenarios, leading to cumulative errors and limited robustness.

External Data Dependency: Existing approaches like MiNet&MaNet [63] utilize additional macro-expression datasets
for training. This reduces practicality, as such data may be not readily available or directly relevant.

• Limited Generalization and Robustness
Dataset Sensitivity: The performances of some methods vary across datasets and category amounts. For instance,

GACNN [27] excels on SAMM with five categories but drops significantly on CASME II with five categories. This
indicates overfitting to specific dataset characteristics or evaluation benchmarks.

Category Scalability: Existingmethods often strugglewhen the number ofME categories increases. Their performances
generally degrade in five-classes evaluation (see Table 4) compared to three-classes evaluation (see Table 5), showing
the limitations in feature discriminability and model capacity for recognizing fine-grained categories.
ACM Trans. Multimedia Comput. Commun. Appl.
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Table 9. Acc and F1 results for different variants of FDP on SAMM [7] in terms of five categories. L: local relational aggregator; G:
global relational aggregator. The best results are highlighted in bold.

Method Acc F1
FDP 86.69 85.29

FDP w/o L𝐷𝐼𝐶 83.98 80.40
FDP w/o L𝑅𝑎𝑛𝑘 83.54 80.02

FDP w/o L 81.79 79.78
FDP w/o G 78.54 75.32

FDP w/o L&G 60.70 59.05

Noise Vulnerability: The performances often degrade on challenging datasets like CAS(ME)3, where noises are
prevalent. Some methods relying on key frames or hand-crafted features are particularly susceptible, demonstrating
poor noise robustness.

Existing methods exhibit critical gaps in practicality, robustness, and generalization. Their performances usually rely
on pre-processing, external data, or specific dataset conditions. In contrast, our FDP overcomes these limitations, and
the results from Tables 4 to 8 demonstrate the superiority.

4.3 Ablation Study

In this section, we conduct ablation experiments to investigate the effectiveness of dynamic image construction module,
rank scorer, local-global feature-aware transformer, and backbone structure on MER. The results of different variants of
FDP are shown in Table 9. These experiments are all evaluated on SAMM dataset in terms of five categories.

4.3.1 Dynamic Image Construction. Compared with the FDP, the performance of FDP w/o L𝐷𝐼𝐶 is degraded after
removing the dynamic image construction module. This demonstrates that dynamic image construction task in our
joint learning framework contributes to MER. The estimation of dynamic image can guide the dynamic representation
F(𝑑 ) shared by the MER module to capture spatial appearances and temporal patterns.

4.3.2 Rank Scorer. When removing L𝑅𝑎𝑛𝑘 of the FDP, the Acc and F1 results of FDP w/o L𝑅𝑎𝑛𝑘 are decreased to 83.54
and 80.02, respectively, which shows the effectiveness of rank scorer. This is mainly because the supervision of rank
scorer can enhance the model’s understanding on the evolution of micro-expression actions.

4.3.3 Local-Global Feature-Aware Transformer. Here we evaluate the main components of local-global feature-aware
transformer, including local relational aggregator and global relational aggregator. When removing both two relational
aggregators, the Acc and F1 results of FDP w/o L&G are significantly decreased to 60.70 and 60.15, respectively. If we
remain either relational aggregator, the results improve a lot. However, the performance is still worse than FDP. This
demonstrates the effectiveness of local-global feature-aware transformer with local-global relational reasoning and
feature learning, which largely determines the performance of FDP as the backbone.

4.3.4 Backbone Structure. Table 10 shows the number of parameters of different backbone structures, in which the
results are obtained by replacing our proposed local-global feature-aware transformer with new backbone. When
directly using the classical vision transformer ViT-Base as the backbone, we obtain low Acc and F1 results with a large
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Table 10. SAMM [7] results (five categories) and the number of parameters (#Params.) for different backbone structures of FDP. The
best results are highlighted in bold.

Backbone Type Acc F1 #Params.
ViT-Base [9] T 70.58 67.24 88.39M

Ours C+T 79.82 74.46 28.71M
Ours C′+T 83.93 79.21 27.14M
Ours C∗+T 86.69 85.29 14.82M

ResNet18 [17] C 76.47 73.25 13.27M

T: Transformer
C: Conv.
C′: Conv. + BN + ReLU + Pointwise Conv.
C∗: Multi-head Conv.

number of parameters. If using a single vanilla convolutional layer to replace our proposed multi-head convolution block,
the performance is significantly improved over ViT-Base. This is because convolution works better than ViT-Base in
extracting local features, which demonstrates the importance of local features for MER. When further adding pointwise
convolution, the results are better while the number of parameters is slightly decreased. This is attributed to the
enhanced feature learning ability and the reduced number of output channels by pointwise convolution.

When changing the single head to multiple heads, our final version of FDP achieves the best performance using
the least parameters. This is because our proposed multi-head convolution captures more diverse ME information
from the input data by allowing different groups of channels to learn independent features. We also compare with a
classical convolutional network ResNet18. Although it requires less parameters, its performance is significantly worse.
Compared to typical vision transformers and convolutional networks, our FDP performs better by integrating their
both advantages.

We also notice that FDP shows markedly superior training efficiency compared to ViT-Base [9] due to its lightweight
hybrid architecture. The multi-head convolution reduces optimization complexity by autonomously capturing diverse
spatial representations without manual feature engineering. Besides, the self-stabilizing properties of the pointwise
convolution layers reduce the requirement of learning rate scheduling, which substantially diminishes tuning effort.
Moreover, FDP exhibits robustness to hyperparameter changing comparing to other variants, demonstrating better
hyperparameter insensitivity.

4.3.5 Weights of Losses. As shown in Eq. (8), the full loss is composed of MER loss L𝑀𝐸𝑅 , dynamic image construction
loss L𝐷𝐼𝐶 , and rank loss L𝑅𝑎𝑛𝑘 . Table 11 shows the results of our FDP using different weights of loss terms. The first
three rows show that when keeping 𝜆𝑟 unchanged and 𝜆𝑑 increasing, both Acc and F1 results increase. This is because
the numerical scale of 𝜆𝑑L𝐷𝐼𝐶 gradually approaches to that of L𝑀𝐸𝑅 , enabling each loss term to contribute to the
optimization process. However, when 𝜆𝑑 increases to 1000, both Acc and F1 results drop significantly. Due to the overly
large dynamic image construction loss term, L𝑀𝐸𝑅 becomes insignificant in the full loss. When fixing 𝜆𝑑 as 100 and
changing 𝜆𝑟 , the similar phenomenon can be found in the last three rows. Therefore, our method performs the best
when the magnitude values of loss terms are balanced.
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Table 11. Acc and F1 results for our FDP with different loss term weights on SAMM [7] in terms of five categories. The best results
are highlighted in bold.

𝜆𝑑 𝜆𝑟 Acc F1
1 0.1 83.98 80.40
10 0.1 84.50 81.19
100 0.1 86.69 85.29
1000 0.1 50.73 23.67
100 0.01 83.20 79.73
100 1 77.43 73.89
100 10 51.47 35.17

Table 12. Statistics of Wilcoxon rank-sum test [41] and P-values on benchmark F1 results from Tables 4 to 7.

Benchmark Statistics P-value
CASME II (Five Categories) 4.977 3.227e-7
SAMM (Five Categories) 4.243 1.106e-5

CASME II (Three Categories) 2.309 1.046e-2
SAMM (Three Categories) 2.309 1.046e-2

CAS(ME)2 1.964 2.477e-2
CAS(ME)3 2.611 4.512e-3

4.4 Significance Test

4.4.1 Statistical Significance between State-of-the-Art Methods and Our Method. To prove the significant superiority of
our method to previous methods, we conduct a significance test based on the results from Tables 4 to 7. Considering
the results of different methods do not follow a normal distribution, we conduct the Wilcoxon rank-sum test [41].
Specifically, we make the following hypotheses:

• 𝐻0: There is no significant difference between our method and state-of-the-art methods.
• 𝐻1: Our method is significantly superior to state-of-the-art methods.
The test statistics and P-values of the F1 results are shown in Table 12. It can be seen that all P-values are less

than 0.05. Therefore, we reject the null hypothesis 𝐻0 and accept the alternative hypothesis 𝐻1. Our FDP significantly
outperforms state-of-the-art methods in terms of statistics.

4.4.2 Statistical Significance between Backbones and Our Proposed Modules. To investigate the effectiveness of the
proposed modules in our framework from the perspective of statistics, we conduct a significance test based on the
results from Tables 9 to 10. We make the following hypotheses:

• 𝐻0: Our framework has no significant effect.
• 𝐻1: Our framework has a significant optimization effect.
The test statistics and P-values of the F1 results are presented in Table 13. As can be seen, all P-values are less than

0.05. Therefore, we reject the null hypothesis 𝐻0 and accept the alternative hypothesis 𝐻1. It is demonstrated that our
proposed modules are beneficial for MER.
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Table 13. Statistics of Wilcoxon rank-sum test [41] and P-values on ablation F1 results from Tables 9 to 10.

Ablation Statistics P-value
Modules 2.611 4.512e-3
Backbones 2.309 1.046e-2

Table 14. Dynamic image construction results (lower is better) for different variants of FDP on SAMM [7]. The best results are
highlighted in bold.

Method Average MSE (×10−3)
FDP 1.44

FDP w/o L𝑀𝐸𝑅 1.78
FDP w/o L 6.77
FDP w/o G 6.90

FDP w/o L&G 7.43

4.5 FDP for Dynamic Image Construction

We have validated the contribution of dynamic image construction task to MER in Sec. 4.3. To also investigate the
effectiveness of MER task for dynamic image construction, we implement a new baseline FDP w/o L𝑀𝐸𝑅 . It only
achieves dynamic image construction by removing the MER module. Besides, FDP w/o L, FDP w/o G, and FDP w/o L&G
are still evaluated to explore the influence of local-global feature-aware transformer on dynamic image construction.
We report Average MSE as the evaluation metric, which is computed as the average of MSE between D and D̂ over all
samples.

Table 14 shows the average MSE on the SAMM benchmark. We can observe that FDP outperforms FDP w/o L𝑀𝐸𝑅

with the help of MER. This is attributed to the guidance of the MER task to capture facial subtle muscle actions, which
is closely related to the dynamic image. Combining with the observations in Sec. 4.3, it can be concluded that MER and
dynamic image construction facilitate each other in our joint learning framework.

Besides, compared with FDP w/o L, FDP w/o G, and FDP w/o L&G, FDP exhibits a large margin. This demonstrates
that our local-global feature-aware transformer is a strong backbone network for capturing spatio-temporal clues.

4.6 Visual Results

Fig. 4 visualizes the dynamic image construction results of these methods on several video clip samples from CASME II,
CAS(ME)2, CAS(ME)3, and SAMM. We can see that our FDP extracts dynamic information from ME videos with the
best effects. Its estimations are close to the ground-truth annotations, which demonstrates that the fully convolutional
encoder-decoder structure of dynamic image construction module is effective for element-wise prediction. Besides,
compared to FDP w/o L𝑀𝐸𝑅 , FDP captures more appearance and motion details. For example, FDP accurately captures
the dynamics around eyes for the second video sample, while FDP w/o L𝑀𝐸𝑅 fails.

Moreover, the results of FDP and FDP w/o L𝑀𝐸𝑅 look more reasonable than FDP variants with incomplete local-
global feature-aware transformer. This again proves the effectiveness of local-global feature-aware transformer for
the dynamic image construction task. Due to the appearance and motion details captured by the dynamic image
construction task, FDP can focus on facial subtle muscle actions associated with MEs.
ACM Trans. Multimedia Comput. Commun. Appl.
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FDP

FDP w/o ℒMER

FDP w/o L

FDP w/o G

Ground Truth

FDP w/o L&G

SAMMCASME II

Samples

CAS(ME)3CAS(ME)2 MEVIEW

Fig. 4. Visualization of dynamic image construction results for example video clips from CASME II [68], CAS(ME)2 [47], CAS(ME)3 [31],
SAMM [7]. The third row shows the ground-truth dynamic images, and other rows show the estimated dynamic images of different
methods.

4.7 Limitations

According to the above experiments, our method significantly outperforms the previous works. However, there are
a few failure cases, as illustrated in Table 15. We notice that mistakenly recognized videos are very challenging, and
even their ground-truth dynamic images fail to reflect clear facial subtle motions. For example, the correctly recognized
video “006_2_4” of the subject “006” from SAMM has highlighted motions around eyebrows in its dynamic image, while
the mistakenly predicted video “006_5_11” has no significant motions in its dynamic image. We will try to solve this
challenging motion capture issue in the future work.

Besides, our method has limitations when dealing with real-world data. Since most of the existing ME datasets consist
of frontal and well-lit face images collected in constrained environments, our method ignores the case of in-the-wild
faces. We will also explore more robust techniques to the unconstrained scenarios.

5 Conclusion

In this paper, we have proposed a novel end-to-end fine-grained dynamic perception framework for joint MER and
dynamic image construction, in which the rank technique benefits MER and two correlated tasks contribute to each other.
Besides, we have developed a local-global feature-aware transformer to extract local-global features. Our framework

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 15. Failure cases of our FDP on CASME II [68] and SAMM [7]. The incorrect predictions are highlighted in bold. “DI” denotes
dynamic image.

Subject Video Ground Truth Prediction
Name Illustration DI ME Cate.

SAMM 006

006_2_4006_2_4

006_2_4

Anger Anger

006_5_11006_5_11

006_5_11

Anger Contempt

CASME II 17

17_EP03_0917_EP03_09

17_EP03_09

Happiness Happiness

17_EP13_0917_EP13_09

17_EP13_09

Happiness Surprise

does not rely on pre-extracted hand-crafted features and key frames, which is a promising solution to MER with good
applicability.

We have compared our method with state-of-the-art works on the challenging CASME II, SAMM, CAS(ME)2, and
CAS(ME)3 benchmarks. It is shown that our method outperforms previous works for both single dataset evaluation
and cross-dataset evaluation. Besides, we have conducted an ablation study which indicates that main components in
our framework are all beneficial for MER. Moreover, the experiments on dynamic image construction show excellent
performance of our method, and the visual results demonstrate that our method can capture facial subtle muscle actions
related to MEs.

In the future work, there are two aspects worthy of further exploring. First, regarding to the process of dynamic
image construction, we hope to guide the network to pay more attention to the areas where MEs occur and ignore
irrelevant information such as facial shape. Therefore, it is promising to develop the technique of disentangle irrelevant
information like facial identity information. Second, the input of our network is a sequence of frames, in which some
frames except for the key frames also play an important role in MER. It is promising to design a technique to locate
important frames besides the key frames in a video clip, thereby facilitating the MER.
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